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ABSTRACT

Pressure distribution data have been obtained in flight at four span stations on the wing panel of the YAV-gB

airplane. Data obtained for the supercritical profiled wing, with and without pylons installed, ranged from Mach 0.46

to 0.88. The altitude ranged from approximately 20,000 to 40,000 ft and the resultant Reynolds numbers varied from

approximately 7.2 million to 28.7 million based on the mean aerodynamic chord.

Pressure distribution data and flow visualization results show that the full-scale flight wing performance is com-

promised because the lower surface cusp region experiences flow separation for some important transonic flight

conditions. This condition is aggravated when local shocks occur on the lower surface of the wing (mostly between
20- and 35-percent chord) when the pylons arc installed for Mach 0.8 and above. There is evidence that convex fair-

ings, which cover the pylon attachment flanges, cause these local shocks. Pressure coefficients significantly more

negative than those for sonic flow also occur farther aft on the lower surface (near 60-percent chord) whether or not

the pylons are installed for Mach numbers >_ 0.8. These negative pressure coefficient peaks and associated local

shocks would be expected to cause increasing wave and separation drag as transonic Math number increases.

NOMENCLATURE

A

a/c

b

CD

Ct.

CL,_

CN

CN,

CN_

Cp(CP)

c;
c (C)

C_tV

Gin

Cn

D

F

b 2

wing aspect ratio, T

aircraft

total wing span, ft or in.
D

drag coefficient,

lift coefficient, i.

dCL
slope of lift cocflicient with respect to o_, 7-g, deg -_

fo .o Cwing panel normal force coefficient, .185 c, c---_-vd,7, normal to wing panel

f01 .0 Cwing panel normal force coefficient, cos¢ _85 c, c--_-vd,7, normal with respect to aircraft reference

axis system, (accounts for negative dihedral)

dCx de o-Islope of panel normal force coefficient with respect to c_, 7-g-_, _,

local pressure coeflicicnt, (P_£_z._e__
ct

critical pressure cocflicicnt for sonic velocity

local wing chord, in.

b

 fo'mean aerodynamic chord, in., _- c2dy

average chord of wing panel, in.

xsection pitching moment coc flicicnt about 0.25 c, A Cp( 0.25 -x) d -
C C

section normal force coefficient, ACp d -
C

drag, lb

plan form parameter, At x/1 - (Mco_ ') 2 ]
0.9 cosA r



hp(HP) pressurealtitude,ft
L lift, lb

LERX leading-edgerootextension

_max maximumlift-dragratio
M(MINF) free-streamMachnumber

N panelnormalforcecoefficientslopeparameter,10CN,[ x/l- ( McosA/) 2 ]
COSA /

p local absolute static pressure p] + Pr, lb/ft 2 !

pj local differential static pressure, ib/ft 2

Pr reference pressure, lb/ft 2

p_(PSINF) ambient static pressure, lb/ft 2 ]

q (QBAR) free-stream dynamic pressure, 0.7M 2 . Pot, Ib/ft / *

S wing reference area, ft2 [
I

THEO theoretical
i

T.P. test point l
|

t local airfoil thickness, in. [
i

|
V/STOL vertical short lakeoff and landing i

x(X) distance along chord from leading edge, in. i

y distance outboard from aircraft centcrline, in. i

z' distance above and below wing chord line normal to the wing panel, in.
|

a(ALPHA) angle of attack, deg !

A Cp C_9 lower - Cp upper, at same value of _- i

6 t/c ratio of increase in section thickness (from addition of strip tubing) to the section cord [

negative dihedral angle, per panel, deg i
|

rj semi-span fraction, y/b _i
=I

A leading-edge sweep angle, deg |
C •

A _- sweep angle of quarter chord, deg I

A' effective angle of sweep, deg (as defined in ref. 14), A _- -- _ i
taper ratio .

=

!

INTRODUCTION -'
=

Development of a prototype vertical short takeoff and landing (V/STOL) tactical fighter known as the Hawker
Siddeley Kestrel (designated the P.1127), was begun in the United Kingdom in 1957. From this beginning evolved -"

the Harrier, whose mission was close support and armed reconnaissance (approximately 1966, (ref. 1)). In 1971, the

first Harriers, with modifications to suit customers' specifications, were delivered to the United States Marine Corps

(USMC) under the designation AV-SA.
!

9 'During the mid-1 70 s, the USMC issued requirements for an advanced version of the Harrier, the AV-SB,

which was intended to have a significantly increased range-payload radius. The increased performance was to be

obtained through structural, propulsion, and aerodynamic improvements. The aerodynamics improvements have

]11



several sources, but the primary elements of aerodynamics improvement were to be the inclusion of an advanced

supcrcritical airfoil and a planform of greater area and span.

Before the AV-8B was in production, McDonnell-Douglas (St. Louis, MO) and the USMC modified two AV-8A

aircraft (designated as YAV-8B) to serve as prototype configurations for the follow-on AV-SB aircraft (ref. 2).

One of the YAV-8B aircraft was loaned to the National Aeronautics and Space Administration (NASA) for spe-
cial in-flight evaluation.

Early flight experience with the YAV-8B revealed inadequate level flight acceleration. From the standpoint of

aerodynamics, the YAV-8B wing was designed without regard for pylons. However, the aircraft was to be flown

operationally with six undcrwing pylons, and there was concern that these items might preclude efficient lower

surface flow. In addition, when the aircraft was loaned to NASA it was considered appropriate to define the range

of flight conditions (Mach number (M) and angle of attack (c_)) that would provide efficient supercritical chordwise

pressure profiles over the wing upper surface. Consequently, NASA performed an in-flight wing pressure distribution

and flow visualization evaluation with and without the undcrwing pylons. Taken together, the pressure data and flow

visualization results were expected to dcl'ine the performance of the wing, show the effects of the pylons, and reveal

any regions of poor flow conditions over the wing surface.

The NASA Ames Research Center in Moffett Field, CA, completed these flight tests during the spring and
summer of 1986, with analysis done by the NASA Dryden Flight Research Facility at Edwards, CA. The data are

shown mainly as wing surface pressure coefficients (plotted as a function of local chord station), section normal

force coefficients, and panel normal force coefficient. Data were obtained from four rows of wing surface orifices

aligned parallel to the aircraft centerlinc at discrete span stations. Mach numbers ranged from approximately 0.46 to

0.88, and altitude varied from 20,000 to 40,000 ft. This provided Reynolds numbers between 7.2 x 10 6 and
28.7 x 10 6 based on the wing mean aerodynamic chord.

AIRCRAFT

General Physical Features

The YAV-SB is a single-seat, transonic light attack V/STOL aircraft powered by a single turbofan engine (fig. 1).

The YAV-8B aircraft is a derivative of the AV-SA aircraft. It retains the characteristic appearance of the AV-8A

while incorporating an improved inlet design, a larger wing with an advanced technology airfoil (the design was

considered advanced during the mid-1970's), and other modifications (ref. 2). With this airfoil, the "design" Mach

number was 0.85 and the Mach number for cruise was 0.815 (rcf. 3).
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Figure 1. YAV-8B in wingborne flight; four chordwise rows of external (pressure orifice) tubing shown on

right wing.

The YAV-SB has provisions for external store installations on six wing pylons. In addition, two gun pods can

be attached to the fuselage. Figure 2(a) is a three-view of the YAV-8B. Figure 2(b) shows two of the four rotatable

exhaust nozzles. Although these nozzles were rotated to exhaust to the rear for the wingborne flights in this report,

they can rotate downward through 98 ° for V/STOL operations and transitional flight. The YAV-SB was flight tested

using a removable leading-edge root extension (LERX) designed to increase the wingborne maneuverability. A

version of the LERX was installed on the YAV-SB aircraft for the flights reported in this report, figures 1, 2(c), and

other subsequent photographs.

Conventional aerodynamic controls are used in wingborne flight and engine bleed-air reaction controls are used

in jetborne flight, with both systems operative during transition modes. A comprehensive listing of physical char-

acteristics of the airplane and other details about the propulsion system, controls system, and the V/STOL phases of

flight are found in references 4 and 5. A brief listing of physical dimensions is given in table 1.

4
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(a)Three view,dimensionsinfeet,withoutpylonsorLERX.

Figure 2. YAV-gB a_rplane.
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(b) View showing rotatable exhaust nozzles on left side, without LERX.

Figure 2. Continued.



/
/

\
\
\

52.6 in. _,

\

A \ A

(c)

_3

Section A-A, ref. 12
910"261

Leading-edge root extension (LERX).

Figure 2. Concluded.



Wing Characteristics

Table 2(a) gives the section coordinates for the YAV-SB at the four semi-span stations from which pressures

were obtained. Figure 3 is a diagram of one of the sections, and the variation of thickness ratio with respect to span

station is shown in figure 4 (ref. 5). The variation of wing twist, leading-edge radius, and camber with span station
is also found in reference 5.

Twelve vortex generators are located at approximately 29 percent of local chord on the upper surface of each

wing from slightly outboard of the landing gear outriggers, from r/= 0.58 to r/= 0.87. The spacing of the vortex

generators along the span is about 5.2 in., nearly 7 times the height (span) of each vortex generator. The vortex

generators have a span of 0.75 in., a chord of 1.88 in., and are canted 0ending-edge outboard) at an angle of 13°

relative to free-stream flow. They are shown in figures 5 and 6 and will appear in another in-flight photograph
to follow.

z:
in.

20 --

10 --

0

-10

- 20 ! I I I ! 1 I ,.I I !
0 .1 ,2 .3 .4 .5 .6 ,7 .8 .9 1.0

x/c 9_o2e_

Figure 3. Airfoil of YAV-8B at 7/= 0.47. Ordinates for all four orifice row sections shown in table 2 (a).
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Approximate lower surface

wing-fuselage intersection

0
I I I I I I !

•3 .4 .5 .6 .7 .8 .9 1.0

Fraction of semispan, -q 91o_3

The variation of airfoil thickness ratio as a function of semi-span, reference 5.

Figure 5. Four chordwise rows of external tubing, cover plate removed.
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Figure 6. Four rows of flexible external tubing, cover plate in place.

Pylons

The wing surface pressure measurements oft_his report were made with pylons installed and with pylons removed.

The three semispan locations of the pylons are shown in figures 1, 2(b), andin figure 7(a) in terms of the semispan

fraction. Figure 7(a) also shows the pylon interface profile with the lower surface of the wing. The bulbous portions

of these profiles are caused by convex fairings which cover mounting flanges and bolts. Photographs of the fairing

and a part of the pylon for r_ = 0.70 (left wing) are shown in figures 7(b) and 7(c) to show the relative size and shape

of these convex fairings. For flights without pylons these fairings, flanges, and bolts are absent and the wing lower

surface is clean except for the outrigger fairings and control surface actuator fairings.

10



11= 0.47 11: 0.64 = 0.78 Orifice
rows

= 0.41 TI= 0.70 11= 0.86 _ Pylon

Outrigger, stations

11= 0.56 9_0266

(a) Relative location of pylons, outrigger, and lower surface pressure orifices (as viewed from above the wing).

Figure 7. Interface of pylons and lower surface of wing.
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(b) Top view of intermediate pylon, 71 = 0.70, showing interface of pylon and wing lower surface in region of

mounting flanges.

(c) Intermediate pylon, 77= 0.70, viewed from 2 o'clock position.

Figure 7. Concluded.
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Figure 8(a) shows an in-flight view of the pylons-on configuration. Note the location and relative size of the

outrigger landing gear fairing, and the array of tufting (flow cones) which were used to identify regions of separated

flow. Figure 8(b) shows the pylons-offconfiguration. When the pylons are installed (fig. 8(a)), the aft-most portions

blend into the aileron actuator fairings, and the inboard pylon covers a major part of the flap actuator fairing.

Flow direction

(a) Pylons on.

Figure 8.

Flow direction

(b) Pylons off.

In-flight views of wing lower surface, M _ 0.64, o__ 5 o

M0270
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INSTRUMENTATION AND DATA ACQUISITION

Wing Pressures

The in-flight surface pressures were measured on the upper and lower surfaces at four rows of orifices. These

orifices were located in external flexible tubing which was installed parallel to the free-stream flow. The locations

of these orifice rows over the span are shown in figure 7(a); the chordwise orifice locations for the lower surface are

illustrated schematically in figure 7(a) and given explicitly in table 2(b). Figure 5 shows the flexible tubing during

installation. The two inboard rows extend to the trailing edge (over the flaps), whereas the two outboard rows end

where they intersect the aileron hinge line. In figure 5 near the leading edge of the wing surface, the cover plates

have been removed to permit access for hook-up of the external flexible tubing to the pressure transducers. Figure

6 shows the installation after the flush Cover plates had been installed, which provided a smooth, sealed profile.

The external flexible tubing was obtained in strips of multiple tubes and was bonded to the upper and lower

surfaces of the wing with a potting compound. The same compound provided a faired ramp-like surface at the lateral

edges of the tubing strip (fig. 9). Figure 9 als0 shows the inside and outside diameters of this tubing. Reference 6

contains details on the method of installation and examples of comparisons of pressure data obtained from external

tubing and flush orifices, both for the same airplane.

t--" Potting compound
Diameter used to attach tubing

0.110 in. outside _ to wing and to provide
0.045 in. inside / fairing ramp

kI

910271

Figure 9. Cross-sectional view of cxtcrnal tubing.

Inside the wing, beneath the cover plates (fig. 6), the tubing from the individual orifices was connected to in-

dividual ports of a pressure transducer unit (one unit for each of the four orifice rows). The transducer units were

32-port electronically multiplexed differential devices which were referenced to a plenum (volume roughly 0.4 gal.)

that provided a quasi-steady level of reference pressure. Heater blankets covered the transducer units to maintain a

constant temperature throughout the test flights.

The reference pressure for the wing pressure transducer units, the reference plenum, originated from within the

fuselage (vented to the outside atmosphere) aft of the wing. An absolute high-accuracy digital transducer measured

the plenum reference pressure. It was not necessary to control the temperature of this transducer because it was

located in the avionics bay which was maintained at a temperature near +22 °C.

Airdata System

Absolute high-accuracy digital transducers measured static pressure and total pressure for determining Mach

number, dynamic pressure, and surface pressure coefficients. These transducers were also located in the temperature

controlled avionics bay. Figure 10 shows the airdata head which senses static and total pressure. Static pressure was

calibrated for position error by the pacer method (ref. 7). Calibrated vanes on the airdata head measured angle of

attack and angle of sideslip.

14
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Pitot f Angle of attack p Noseboom ,__

tubeT_---_; I:,,_ 11 _ -- " \_ ii !\

\ _- Temperature probeorifices _- Angle of attack and
Angle of yaw yaw transmitter (inside) g_o272

Figure 10. Airdata head and noscboom, reference 4.

Data Processing

Most of the flight-test program consisted of steady-state flight conditions where each condition was held for

at least 30 sec. Because the data rate was 10 samples/see, the data sets were approximately 300 samples for each

parameter. Each data set was run through two sets of filters. The first filter removed telemeuy dropouts and spikes,

the second filter took out points which deviated significantly (more than +10 percent) from the mean. After the

filtering, the data were averaged. The averaged pressure values were used to calculate local pressure coefficients

for each orifice and these were the pressure coefficients analyzed and integrated to obtain section and panel normal

force coefficients and pitching moments.

Flow Visualization

In-flight flow visualization was used as an aid in interpreting the wing surface pressure data. The visualization

was achieved through the use of flow cones, which provide evidence similar to tufts (ref. 8), and in-flight photography

from a nearby chase plane. The flow cones were attached with nylon filament reinforced tape in chordwise rows

spaced throughout the span (approximately 10 in. apart) with a fore-to-aft spacing of about 5 in. The cones were

applied to the upper and lower surfaces of the left wing and pylons (figs. 8 and ll). Figure ll(b) shows the flow

cones as applied to the lower wing surface, outboard of the main landing gear, under static conditions. Though flow

cones were used to achieve flow visualization, there are instances in this report where they arc referred to as tufts.

15
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(a) Upper surface, flight conditions.

(b) Flow cones as applied to lower surface outboard of landing gear outrigger, static conditions.

Figure 11. Flow cones as applied to left wing and pylons of YAV-8B.



DATA UNCERTAINTY

Random Error

Random pressure errors are estimated to be within the following limits. These limitations are based on the char-

acteristics of the various pressure transducers used to obtain the wing surface pressure coefficients, experience with

similar sensor systems, and the airdata calibration (i.e., position error calibration of the research airspeed system).

Error source Pressure error, lb/ft 2

Pot -t-3.9

Pr -t-0.6

Pl -4-4.0

q 4442.6

These errors are calculated for flight at M = 0.85, a pressure altitude of 30,000 ft, and an angle of attack of

approximately 5°. This important combination of Mach number and angle of attack provides upper surface flow

that is supercritical at near-design conditions. The random error limits for Mach number and angle of attack are

approximately -t-0.005 ° and +0.3 °, respectively.

A worst-case arrangement of the pressure errors, i.e., a case in which the errors are entirely additive, would

produce a maximum random error in Cp of 4440.02. This occurrence would be statistically rare, however, and a

representative average random error would be approximately +0.01 in Cp.

Bias Error

External tubing was bonded to the wing surfaces longitudinally at four span stations to obtain wing pressure

data. It was not practical to retrofit the wing panel with flush orifices and internally routed pressure tubing because

the YAV-8B had a wet wing.

The probable bias in measured pressures caused by the external tubing (primarily near the leading edges) was

acceptable because the wing pressure data were to be interpreted primarily on an incremental basis. That is, the

main purpose of this investigation was to define the difference in wing pressures for the same flight condition, for

pylons-on and pylons-off configurations. Thus, for this evaluation, random errors are of greater concern than are
bias errors.

The bias in the data caused by the external tubing can be estimated through earlier experiments in which data

were obtained on a high-aspect ratio supercritical wing (ref. 6). It was determined therein that the presence of a

proportionally larger (thicker) strip of tubing caused an increase in section normal force coefficients of approximately

10 percent over those c, values obtained from flush orifices. This increase in ca was attributed to an apparent

increase in local section thickness. The ratio of apparent local section thickness-to-chord length, t/c, for the YAV-8B

was increased less than for the aircraft of reference 6, when the external tubing was applied (At/c for YAV-SB was

40 percent of At/c for ref. 6). Therefore, the expected increase in c_ caused by the external tubing on the YAV-8B

was approximately 4 percent. This increase, however, would exist for pylons-on and pylons-off configurations.

A data anomaly not addressed in the previous paragraphs was discovered after all the flights were completed

and after the data were processed. This problem affected pressure coefficients derived from two orifice locations

between x/c = 0.65 and x/c = 0.80 for the upper surface at 7/= 0.47. Two different ports of the 32-port transducer

devices may have been assigned the same parameter identification, or the controller card may have addressed the

wrong transducer port on two occasions for every cycle through the 32 ports. Irrespective of which condition was

the cause, because only two orifice locations experienced the problem, the impact on the affected section profiles

is not major and the influence on the panel normal force coefficients is considered to be minor. The conclusions
derived from the data are unaffected.
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TEST CONDITIONS

Flight data were obtained from a range of approximately M = 0.46 to 0.88. Test altitudes varied from approx-

imately 20,000 to 40,000 ft which provided a Reynolds number range extending from 7.2 million to 28.7 million

based on the mean aerodynamic chord. Data were obtained over much of these stated ranges for pylons on and

pylons off. Most of the test runs were constant Mach number-altitude, however, a few runs were made in which

velocity was increased or decreased, or constant angle of attack turns were made at constant altitude.

The following table contains the number of test runs at which pressure distribution data were obtained for several

combinations of nominal Mach number and pressure altitude.

Nominal altitude, ft

Nominal 20,000 30,000 40,000

Mach Pylons Pylons Pylons Pylons Pylons Pylons
number on off on off on off

0.50 2 3 0 0 0 0

0.65 1 3 1 3 0 0

0.75 1 4 1 3 1 1

0.80 3 5 1 3 1 1

0.845 1 3 2 3 1 1

0.86 1 2 0 0 0 0

0.875 0 1 3 3 0 0

PRESENTATION OF THE DATA

Tables in Appendixes A through F contain tabulated local surface pressure coefficients derived from the pressure

measurements for the YAV-8B airplane with pylons on and pylons off. The chordwise distribution of some of these

pressure coefficients will be presented in support of the Results and Discussions section.

All other quantitative flight data to be presented in subsequent figures are integrated quantities which are de-

rived from the basic data presented in Appendixes A through F and the various pressure distribution plots. The

integrated section quantities, cn and era, are listed in Appendixes G through L for all the flight conditions shown in

the preceding table.

RESULTS AND DISCUSSION

General Remarks

Among the well-known features of supercritical airfoils is a significantly reduced upper surface curvature as

compared with conventional airfoils. This lessened surface curvature provides reduced shock losses and, for the

same lift, reduced wave drag and possibly diminished shock induced separation (refs. 9, 10). The design condition

pressure distribution resulting from a supercritical airfoil is characterized by a flattened or plateau-like upper surface

chordwise distribution of pressure and a high-pressure region under the aft, cusp, portion of the airfoil (fig. 12).

The preceding characteristics, which are somewhat typical for advanced supercritical airfoils, are noted to gauge

qualitatively whether the YAV-8B wing provides the design (i.e., supercritical) upper surface plateau-like pressure

distribution for important high-speed flight conditions. Of the many flight-test conditions recorded (Test Conditions

18
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section and Appendixes A through F), those displaced not more than 1° in angle of attack from the envelope of

conditions for near maximum lift-drag ratio will be given the most attention.

The conditions evaluated in this series of flights, the specific combinations of Mach number and angle of attack,

are shown in figure 13. In addition, shown in cross-hatch is the envelope for conditions near maximum lift-drag ra-

tio. These conditions are the Mach number-angle-of-attack combinations which would be expected to provide near-

maximum lift-drag ratios throughout the speed range, and Mach number-angle-of-attack combinations that would

achieve wing pressure profiles displaying supercritical upper surface flow conditions at "design" transonic speeds.

This envelope was derived from 15-percent scale model force tests (ref. 11) because the full-scale airplane was not

instrumented to determine lift and drag in flight. Figure 13 shows that at the higher Mach numbers where compress-

ibility is important, many of the flight-data runs were performed at angles of attack lower than those expected to

produce the most efficient flight, based upon the model-derived envelope. The approximate design condition and

the anticipated cruise condition are also shown in figure 13. Few of the many test points shown in figure 13 will be

analyzed and discussed in detail; however, all the test points shown will become a part of the integrated force and

moment coefficients and will be used to evaluate the relative efficiency of the entire wing panel.

m

f Supercriticalpressure plateau

+ I .... I I I I
0 .2 .4 .6 .8 1.0

x/c
910274

Figure 12. Schematic of chordwise pressure distribution for typical supercritical airfoil at design condition, i.e., at

design Mach number and angle of attack.
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Chordwise Pressure Distribution, Pylons On and Pylons Off

Comparison at Off-Design Mach Number

Chordwise pressure distributions will be compared at a Mach number well below the region where the most

significant compressibility effects occur. These data are presented for pylons on and pylons off in figures 14(a) and

(b) respectively for M _-, 0.64 and o_= 7°. The flight conditions for these two configurations are closely matched,

therefore differences in the pressures provide conclusive evidence of the effects of the pylons.

Careful orifice-by-orifice study of the data (i.e., comparison of pressure data at a given test chord for the same

x/c location) in figures 14(a) and 14(b) reveals differences in pressure coefficients for some orifice rows. A less

tedious observation is presented as figure 14(c), where the pressure coefficient data at r/= 0.78 are shown for both

configurations. The pylons-on configuration experiences a lower negative pressure coefficient (higher pressure) in

the region of the most forward upper surface orifice x/c = 0.05. For the lower surface, the pylons cause somewhat

lower pressures over most of the instrumented portion of the chord. These upper and lower surface pressure dif-

ferences, between the two configurations, combine to reduce the section lift being produced when the pylons are

mounted for a given angle of attack.

A closer orifice-by-orifice comparison for all orifice rows (figs. 14(a) and 14(b)) shows that for the lower surface,

the pylons cause slightly lower pressure over much of the chord (approximately 40 percent) for r/ = 0.25 and a

somewhat larger region of lower pressures at 77 = 0.64. These differences are in addition to the aforementioned

greatest differences at r/ = 0.78. The net result is that the pylons cause pressure differences that are measurable

which diminish lift in local areas at Mach numbers well below design or cruise conditions. The degree to which the

entire wing panel loading is diminished by the pylons will be presented later in this report through the integrated

pressures which will provide section and panel normal force coefficients.

Photographs of flow cones for M _ 0.64 and ot _ 5 ° (fig. 8) show the lower surface flow to be attached, although

there is evidence of some velocity decay in the aileron-cusp region. Flow cone photographs are not available for

= 7 °, the angle of attack for the data of figure 14; however, based upon experience at various angles of attack for

other Mach numbers, it is believed that there would be less velocity decay at the conditions of figures 14(a) through

14(c) than at the oL,_ 5 ° condition of figure 8.

Figure 11 (a) shows upper surface flow cone patterns for the pylons-on configuration. This photograph is typical

of the results for all the Mach numbers and angles of attack reported herein; it is also representative of the pylons-off

configuration. The upper surface flow is attached throughout. Though attached flow was always observed over the

upper surfaces for these tests, it should be acknowledged that the angle-of-attack range of these tests was modest.

The slight canting of cones in the third longitudinal row of flow cones outboard from the fuselage is assumed to be

caused by a vortex from the LERX.
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(a) Pylons on.

Figure 14. Chordwise distribution of pressure for M = 0.64, a = 7.0 °.
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Comparison at Angle of Attack Near 5° for Off-Design Mach Number and Near-Design
Mach Number

Off-Design Mach Number, o_ _ 5 °. Chordwise pressure distribution data are shown in figure 15 for both

configurations at M _ 0.75 and _ _ 5.0 °. The pylons-on and pylons-offdata, figures 15(a) and 15(b) respectively,

show peaked upper surface pressure profiles forward of 0.2 x/c for the three outboard orifice rows. This is typical

for supercritical airfoils at Mach numbers below the design condition (ref. 9, 10). The pressure profiles for both

configurations are characterized by very low upper surface-to-lower surface pressure differentials over the mid-chord

region for all four )7locations, orifice rows. Consequently, for this flight condition, whatever lift is being generated by

the wing must come primarily from the regions toward the leading and trailing edges. Because external tubing was

not bonded to the ai|er0ns,=_e distribution of pressure over the aft 0.3 chord is not available from flight for the two

outboard orifice rows, )7 0._ and 0.78, Therefore, only at r/= 0.47 is there evidence from flight data of significant

amounts of llft (i:e_, Significant uPI_fsui'ffice-to-iower surface pressure differentials) over the aft 0.3 chord.

Orifice-by-orifice comparison of upper surface pressures shows almost no influence from the pylons (figs. 15(a)

and 15(b)). For the lower surfaces, at M _ 0.75 and oL ,_ 5.0 °, the effect of the pylons is qualitatively similar to the

effects seen earlier for M _ 0.64. Thus, the pylons cause somewhat lower pressures throughout much of the under

surface, resulting in diminished lift for a given angle of attack. The pressure data for the most forward lower surface

orifice (x/c = 0.075) at )7 0.47, and for the x/c = 0.225 at 7) = 0.64, show the effects of the pylons, negative pressure

coefficient peaks, which portend lower surface supersonic Velocity regions and local shock losses at higher aircraft

Mach numbers. These local effects are believed to be caused by the convex fairings mentioned in the description of

the pylons in the Aircraft section of this report and illustrated in figure 7.
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Near-Design Mach Number, ot _ 5.2 ° Figures 16 (a) and 16(b) show pressure distribution profile data near

design conditions. In contrast to the results from the lower Mach numbers, the data of figure 16 (which are close to

the design Mach number of 0.85) show some of the upper surface pressure profile features expected of a supercritical

airfoil (see General Remarks section).

For both configurations, upper surface negative pressure coefficients of -0.7 or greater are maintained essentially

to mid-chord for all four span stations; the gradients over these regions tend to be mild, though only for r/= 0.25 and

0.64 could they be described as flattened. In addition, the upper surface pressure coefficients remain more negative

than C_, to about x/c = 0.6, which also defines the extent of the supercritical pressure plateaus.

These pressure data, again referring to both configurations, indicate attached flow almost to the trailing edge

at r/ = 0.25 for upper and lower surfaces. Corresponding data for r/ = 0.47 show attached flow throughout the

entire chord length for the upper surface, however, flow cone data (figs. 17(a) and 17(b)), show evidence of ve-

locity decay in the lower surface cusp region. In addition, incipient separation may exist in this region. For the

longitudinal orifice rows at 7/ = 0.64 and 0.78 which are outboard of the outrigger fairing, the flow cone patterns

indicate lower surface flow separation in the aileron--cusp region. These observations apply to the pylons-on and the

pylons-off configurations.

The model data from reference 12 for M = 0.85 and interpolated to ot _, 5.2 ° (fig. 18) show a significant amount

of lower surface lift from the cusp region. The loading for the aft 30-percent chord for r/= 0.64 and 0.78 tends to ex-

ceed, proportionately, that of r/= 0.47. However, though the Mach number-angle-of-attack combination considered

in figures 16(a) and 16(b), i.e., M _ 0.84, ot _ 5.2 °, exhibits effective supercritical flow characteristics over the

upper surface; the pressure data and flow cone data taken together reveal that the full-scale flight wing performance

is compromised because the lower surface cusp region experiences flow separation and is not contributing lift as

would be expected based on the model data seen in figure 18.

An orifice-by-orifice comparison of the pressure data for pylons on and pylons off (figs. 16(a) and 1609)) would

show that the differences caused by the pylons are limited to the lower surface, and are indicative of local shocks

caused by the aforementioned convex fairings. Though there is evidence of this for all three outboard orifice rows,

the data for r/ - 0.64 show the most graphic influence of the pylons. In figure 16(c), the pylons-on configuration

has significantly higher negative pressure coefficient peaks (lower surface, square symbols) at x/c = 0.225 and 0.325

than for the pylons-off configuration. These peaks exceed the critical coefficient for sonic velocity. There is also

a relatively strong local shock near rdc = 0.6 for both configurations. All these shocks, and local shocks at other

locations throughout the span of the wing lower surface, go together to increase drag creep through shock losses,

per se, and in some instances there is probable added drag from localized shock induced flow separation.
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(b) Pylons off.

Figure 17. Concluded.
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Comparison at Near-Design Mach Number, o__ 3.4 o

To achieve the characteristic supercritical chordwise pressure distribution, it is necessary to have the correct

combination of Mach number and angle of attack (ref. 9). Figure 16 shows that some typical supercritical charac-

teristics are evident for this wing at M _-, 0.84 and (_ _ 5.2 °. There were no data for M _ 0.84 at higher angles of

attack, but there are data at lower angle of attack values, 3.3 ° to 3.4 °. The data are shown in figures 19(a) and 19(b)

where the upper surface pressure profiles are not well developed as compared to the levels for oe _ 5.2 ° (fig. 16).

This would be expected based upon the well-known characteristic of supercritical airfoil performance to be sensitive

to relatively small changes in Mach number and angle of attack. Thus, it is not surprising that the angle of attack for

these data (fig. 19) is significantly below the Mach number-angle-of-attack envelope for high lift-drag ratio (L/D)

shown in figure 13 whereas the conditions for figure 16 (M _, 0.84, c_ ,_ 5.2 °) are within the lower part of the

envelope and closer to the design condition. Orifice-by-orifice examination of the data for figure 19 (pylons on to

pylons off) reveals again the additional negative pressure coefficient peaks, for the lower surface associated with the

convex fairings when pylons are installed. A noticeable example would be at x/c = 0.075 for 77= 0.47 and x/c =

0.325 for r/= 0.64.
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Figure 19. Chordwise distribution of pressure for M _-, 0.84, _ _, 3.3 to 3.4 °.
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Comparison at Mach Numbers Near 0.87

The highest Mach number data obtained for an angle of attack reasonably close to the envelope for near-

maximum L/D are shown in figures 20(a) and 20(b). Though the upper surface pressure coefficients for both con-

figurations are less negative for this condition (M _ 0.87, ot _ 4.0 °) than for some previously shown conditions

which demonstrated supercritical pressure profiles; the recompression to sonic conditions, C_,, has been delayed to

locations significantly farther aft on the wing, x/c > 0.7. At rl = 0.47, the flow over the upper surface appears to

be attached over the entire instrumented portion of the section. For ,7 = 0.25 attached flow is maintained to at least

rdc = 0.9. There is no suggestion of separation for the two outboard rows where the pressure measurements end at

the aileron hinge line. There are no corresponding flow cone data available to supplement the pressure data for this

flight condition.

Though the upper surface pressure coefficients are unaffected by the pylons at these conditions; as noted earlier

for M _ 0.84, there are lower surface negative pressure coefficient peaks associated with the pylons. An example

will be shown for r/= 0.64 at three Mach numbers in figure 21, for M _ 0.87 and two lower Mach numbers. These

negative pressure coefficient peaks representing local shocks will be discussed in the next section.
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Comparisonof Lower Surface Pressure Coefficients at Three Transonic Mach Numbers

In figure 21, pylons-on and pylons-off lower surface pressure profiles are compared for three transonic Mach

numbers in which the Mach number and angle of attack for each configuration are closely matched. It has been

previously established that the upper surface distribution of pressure is unaffected by the pylons for each Mach

number. For the lower surface, however, there is a negative pressure coefficient peak associated with the pylons

(see circular symbols, especially for x/c values from 0.22 to 0.32). As expected, the peak becomes more extreme

as Mach number increases. Similar peaks, which represent local velocities that exceed the speed of sound, are also

evident at the other semi-span stations having pressure orifices. The comparisons shown in figure 21 for r/= 0.64

are the most graphic examples recorded, however.

For M _ 0.80 and M _ 0.84, critical pressure coefficient is exceeded (negatively) between x/c = 0.5 and 0.6

for the lower surface even without pylons, and a large portion of the lower surface section is supercritical at M

0.87, without pylons. These local shocks are apparently caused by the flap-aileron actuator fairings and the large

outrigger gear fairing. In summary, it is evident that at transonic speeds the wing lower surface experiences some

shock losses without pylons and significantly greater shock losses when the pylons are installed. The accumulated

effect of all the wing lower surface shocks results in wave drag and some related shock induced separation drag

creeping upward as the transonic velocities increase.

Of the several orifice rows, the one at r/= 0.64 shows the most prominent negative pressure coefficient peaks

associated with the convex fairings. This is caused not only by the adjacent pylon and convex fairing located at r/=

0.70 but it is probably compounded by the nearby outrigger fairing at r/= 0.56 (fig. 7).

At Mach numbers significantly lower than those in figure 21, as compressibility effects diminish, the pressure

peaks caused by the pylons are eliminated. Nevertheless, the general level of the lower surface pressure coefficients

remains somewhat more negative for the outboard portions of the wing panel when the pylons are mounted. Thus,

the wing lower surface contribution to overall lift is slightly reduced by the pylons throughout the Mach number

range of these tests. The net effect of this will be evident through a different data format in following sections. The

accumulated effects of the pylons will be presented through integrated pressure coefficients in the form of section

and panel normal force coefficients.

Summary of Flight Conditions Providing Supercritical Upper Surface Pressure Plateaus

A typical supercritical upper surface pressure profile is described within the General Remarks portion of the

Results and Discussion section. Figure 12 is a schematic of such a pressure profile, including the upper surface

pressure plateau and the lower surface loading in the cusp region. Pressure profiles from flight exhibiting the upper

surface pressure plateau characteristic have been shown in figures 16 and 20, and flight conditions which produce

such profiles will be shown in subsequent figures.

Figure 22 shows the combinations of angle of attack and Mach number for all 59 data runs reported herein

(39 runs for pylons off and 20 for pylons on). To qualify a data run as providing adequate upper surface supercritical

pressure plateaus, as defined herein, the plateau must extend to x/c = 0.5 for all four orifice rows. The eight data

runs in which the criterion was met are indicated by flagged symbols in figure 22. These eight data runs represent

approximately one-fourth of the test conditions flown for M > 0.8. Note the symbols representing the approximate

cruise and design conditions relative to these same eight flagged data run conditions. The performance enhancement

in lift which occurs concurrently with meeting the preceding criterion will be evident in some of the panel normal
force coefficient data to follow.
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Section and Panel Characteristics

General Remarks

To obtain section normal force coefficients from the pressure distribution data, it is necessary to integrate the

pressures over the length of the local chord. Because pressure orifices were not included over the ailerons, there are

no data available for the aft 30-percent chord for the two outboard rows of orifices, _7= 0.64 and 0.78. Consequently,

for these two sections the integrations to calculate cn and Cm assumed linear pressure variations from the aft-most

measured pressure to the trailing edge (assuming a trailing-edge pressure coefficient of zero). The pitching moment

coefficients are considered, for this report, to be less important than the section and panel normal force coefficient

data. However, because the moment coefficients are derived from the same pressure data as are the force coefficients,

they have been computed and are tabulated in Appendixes G through L along with the Cn values.

Section Normal Force Coefficient

Section normal force coefficients presented as a function of angle of attack are presented for the four semi-span

stations having pressure orifices, for pylons-on and pylons-off configurations, in figure 23. The abscissa origins are

shifted to the right as consideration of each semi-span station changes from inboard to outboard.

Figure 23(a) is assembled from data for M = 0.46 to approximately 0.75 because for this range of Mach numbers

it was assumed that compressibility effects, as a discriminator between the two configurations, would be a minor

factor. For both configurations the slope, dcJdo_, is significantly greater for the three outboard stations than for the

inboard station. Though the level ofc_ for a given angle of attack is essentially the same for both configurations, at

r/= 0.25 and 0.47; the pylons tend to cause some reduction in loading, c_, over the angle-of-attack range for the two

outboard test sections. The average reduction is 0.03 to 0.04 in section normal force coefficient for the two outboard

stations. For a Mach number of 0.8 (fig. 23 (b)), the data are limited; however, the trends in the data are similar to

those for Mach numbers of 0.75 and below (fig. 23 (a)).

Figures 23(c) and 23(d) extend the comparison to Mach numbers of approximately 0.845 and 0.875 respectively.

For these higher Mach numbers, the most inboard station again shows no significant effect of pylons on the level of

ca for a given angle of attack. On the other hand, the outboard station, r/= 0.78, which showed some loss in loading

(cn per given angle of attack) with pylons at the lower Mach numbers now shows essentially the same loading for

pylons on and off. In addition, the two middle stations experience reduced loading for the pylons-on configuration

at M _, 0.845 (fig. 23 (c)). Based on these observations and the detailed discussion of pressure distribution from

earlier figures, this reduced loading results from changes in the lower surface pressure profiles because the upper

surface pressure profiles are essentially identical for both configurations at these Mach numbers.

Though figure 23 provides identifiable differences in the level ofcn for a given angle of attack for the two config-

urations, differences in slope are minor and are not great enough to justify discrimination between the configurations.

Therefore, slopes representative of both configurations have been combined for each semi-span station (row of ori-

rices) and are shown in figure 24. The most significant features of the slopes are the higher values of the slopes for

the three outboard stations, as compared to the inboard station, and the slopes all reach their maximum values near

M _ 0.845 and decrease somewhat at the higher Mach number, 0.875. The 15-percent scale model data (ref. 12)

flagged symbols, also show lower slopes for the inboard row. At M _ 0.80, the model slopes are significantly higher

than the corresponding flight slopes for all four test chords.

41



4

t

* i
[]

V v

[] •

v

o
_Om
g -

OO

I
Em

I_- _ O0

0 0 0 0

_>om+w
.go

• 0

GI

o_

I I o

O0 _ 0 0

II

II

If)

II

p,,,.

0

0
m

0

0

c,.)

0

.,.,,

. ,,.._
c,.)

vI

c.)

0

0
".,._

N

O

42

11111



4

4

#

4'

0 0 0 0

_omm_4
0

C
oO rnO<l

<

40

'V"

q)

w

m
t-

o

I I_ _

i I ©'_

II _ oo ".__,

GO _ 0 0

II

N

II

t,_

0

43



44

rTTi

[]
Rm

_:Oi(4
O

,4

"4

% <

4,

.D
r

)

g

I I I °

II

o d
II



A
v

m

A
v

0

[]

ill7

A
w v

0

o_

_ ,_- _ r-..
0 0 0 0

i-

0

o

I

I I I _,

I I I ,_

CO

I I ,* o d
I!

] (,D _

i '_ 0 0
g

II

_I" 0 0

II

(Xl

tO

0 0

II

45



.16 I I I I

d Cn/d(z,

deg -1

.12

.O8

.04

$
[]

0

o"

0 0

0 I I I I

.70 .74 .78 .82 .86 .90
M

Tll

percent
0 25
[] 47

- 0 64
A 78

Flagged
symbols,

- 15 percent
model

910_g7

Figure 24. Slope of section normal force coefficients as a function of Mach number. Representative of pylons on

and pylons off for flight and pylons off for 15-percent scale model.

Panel Normal Force Coefficient

Integration of chord-length weighted section normal force coefficients across the span has provided panel nor-

mal force coefficients for pylons-on and pylons-off configurations. Figure 25 is an example of the integrand for a

flight condition where each of the four test stations displayed the characteristic flattened, supercritical, upper surface

pressure plateau. The variation of the resulting panel normal force coefficients with angle of attack for both config-

urations is presented in figure 26 for the range of test Mach numbers. The level of CN, for a given angle of attack is

close for the two configurations throughout the range of test Mach numbers; however, the values for pylons on tend

to be slightly lower than for pylons off.

The data of figure 26 and corresponding data for M _ 0.82 are assembled (all Mach numbers on the same plot)

in figure 27 to make it easier to visualize Mach number and Mach number-angle-of-attack combination effects. As

previously discussed, certain important combinations of Mach number and angle of attack are necessary to achieve

the desired upper surface pressure coefficient plateau which is characteristic of supercritical flow. In figure 27, those

data points in which all four test chords provided upper surface pressure plateaus extending at least to x/c = 0.5 have

been flagged. The higher CN, values for each given angle of attack, for the flagged symbols, seem to demonstrate

that panel normal force coefficient is enhanced when the supercritical plateau is extensive over the upper surface,

which would be expected.

Figure 28 shows the variation of the slope of panel normal force coefficient with Mach number. The untagged

circular and square symbols show the mean flight slopes between CN, = 0 and CN, = 0.3 for the airplane with and

without pylons, respectively. The effect of the addition of pylons on the panel normal force coefficient slopes is small

and the differences shown are within the accuracy for these slopes. The diamond symbol at M = 0.845 represents

the mean slope from the flight data for both configurations when considering only the data between CN, _ 0.15

and CN, _ 0.30 (or angles of attack above 3°). This greater slope for M = 0.845 and o_ > 3° relates to the earlier
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discussion about figure 27 in which it was observed that the presence of extended upper surface chordwise pressure

plateaus was providing higher levels of C,,., for a given angle of attack, as would be expected.

The flagged symboIs in figure 28 represent the 15-percent scale model pressure data derived from reference 12.

The flight panel CN, slope value at M = 0.80 is significantly lower, approximately 23 percent, than the model derived

slope. The individual section normal force coefficient slopes for flight were also significantly lower than the model

slopes for M = 0.8 as shown in figure 24.

The lower panel normal force coefficient slope for the full-scale YAV-8B (as compared to the model), especially

at M = 0.80, is also evident in the format of figure 29. Here a panel normal force coefficient slope parameter,

N, is plotted as a function of a planform or aspect ratio parameter F. This format was proposed by Diederich

in 1951 (ref. 13) and later applied by Hoerner and Borst (ref. 14) as an aid in correlating lift curve slope data for

configurations having different wing sweeps and aspect ratios for subsonic and low transonic compressible flow

Math numbers. This format has been used in figure 291 so that panel normal force coefficient slope data from the

YAV-SB can be compared with slopes from other current aircraft with some accounting for differences in planform
and Mach number.

The slopes for the other aircraft are from unpublished flight data for the AFTI/F-11 I, represented by a square

symbol and flight data from the variable sweep F-14, various diamond symbols (ref. 15). Because this analysis pro-

cedure is restricted to "subsonic Mach numbers preferably not too near 1," as stated in reference 13, the comparisons

of results from the three aircraft should be regarded as qualitative, and this is acknowledged through the format used
in figure 30.

On this basis, the ratio of the N parameter for the three aircraft to the corresponding theoretical N parameter is

plotted at the respective F parameter values in figure 30. The low value of this ratio at M = 0.80 for the YAV-8B,

may be related to the fact that the panel normal force coefficient slope for flight is significantly lower than for the

model as seen in figures 28 and 29. However, the YAV-SB panel efficiency ranks with the panel efficiency of the

other aircraft as defined by this parameter for the Math numbers equal to 0.845 or above, solid symbols. This format

for portraying panel lifting efficiency is oblivious to the respective drag levels for the three wing panels considered
in figures 29 and 30.

1The ordinate for the theorelic_d curve for figure 29, refs. 13 and 14, would be: l0 dC---L-1%/l-(McosA ,)2
do cosA '
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CONCLUDING REMARKS

Pressure distribution data have been obtained in flight at four span stations on the wing panel of the YAV-8B

airplane having a supercritical airfoil. Data have been obtained for the wing panel with and without pylons installed

over a Mach number range from 0.46 to approximately 0.88. The altitude ranged from approximately 20,000 to

40,000 ft and the resultant Reynolds numbers varied from approximately 7.2 million to 28.7 million based on the

mean aerodynamic chord. Analysis of these flight data resulted in the following observations:

.

.

.

The chordwise pressure distribution data and flow visualization results show that the full-scale flight wing

performance is compromised because the lower surface cusp region experiences flow separation for some

important transonic flight conditions. This occurs while the upper surface flow is producing extensive su-

percritical pressure plateaus as well as at angles of attack and Mach numbers that are too low to provide the

characteristic upper surface supercritical chordwise pressure profles.

Local shocks occur on the lower surface of the wing (mostly between 20-and 35-percent chord) when the

pylons are installed for Mach numbers of approximately 0.8 and above. It is believed that convex fairings

which cover the pylon attachment flanges cause these local shocks. Pressure coefficients significantly more

negative than that for sonic flow also occur farther aft on the lower surface (near 60-percent chord) irrespective

of whether the pylons are installed for M _> 0.8. It is probable that these negative pressure coefficient peaks

cause drag creep from the shock losses, per se, and in some instances, from local shock induced separation.

The more negative pressure coefficients associated with the local shocks and the convex fairings on the wing

lower surface, with pylons, cause the level of CN for a given angle of attack to be somewhat lower than for
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thewingwithoutpylons,for M _>0.8. However, the effect of pylons on the slope Of CN with angle of attack
was not significant.

4. The slope of the panel normal force coefficient with angle of attack for the full-scale wing was significantly

lower (approximately 23 percent) than for the 15-percent scale model at Mach 0.8.

5. Upper surface chordwise pressure distributions demonstrate a characteristic supercritical pressure plateau for

Mach numbers from 0.82 to about 0.87 for angles of attack near 5.9 ° and 4.0% respectively. These flight

conditions provide similar upper surface pressure profiles for the wing with and without pylons.

6. Flow visualization data show attached flow over the entire wing panel upper surface throughout the Mach

number and angle-of-attack range and of these tests irrespective of whether the pylons were installed.

55



Table1. Physicaldimensionsof theYAV-8B.Informationextractedfromref.5.

Wing(thco) Stabilator V-tail
S(projected),ftz 230.0 47.54 25.83
Aspectratio 4.0 4.08 1.23
A,taperratio 0.300 .201 .268
b(projectcd),ft 30.33 13.92 - -
b/2(projected),in. 181.99 83.54 (h)67.50
C,root(projected),in. 139.99 67.39 86.93
C,tip(projected),in. 42.00 17.83 23.30
e.(projcctcd),in. 99.79 46.44 61.24
A L.E.(projected) 36° 39.80° 47.36°
A C/4(projected) 30.62° 33.91° 40.37°
t/c,root,percent 11.5 7.0 8.2
t/c,tip,percent 7.5 7.0 5.2
Incidence 3° - -
Dihedral - 11° - 15.84°
Twist - 8° - -
Displacement + 12.750,- 11.75°* --
Airfoil Modified HSA** HSA

Supercritical
*Includes± 1°30'autostab
**HawkerSiddclcyAviation

Control surface Area (projectcd) Span (projected) Deflection

Flap 15.49 ftz/side 64.54 in./side +7 °, +25 °, +61.7 °
Aileron 6.19 ft2/sidc 58.90 in./side ±27 °**

Rudder 5.27 ft2 60.75 in. +15 °

Speedbrake 4.5 ft2 36.5 in. 66°

**Includes 15° aileron droop and 4-2" autostab

Wetted areas, ft2

Fuselage 541

Wing 379
H-tail 84

V-tail 52

Outrigger pod 45
Ventral 11

Total 1112
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Table 2(a). Coordinates for the four test sections, z_.

Harder YAV-88 wing ordinates, in.

r/= 0.25 r/= 0.47 r/= 0.64 7/= 0.79*
Station,

percent
Upper Lower Upper Lower Upper Lower Upper Lower

surface surface surface surface surface surface surface surface
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

3.00

4.00

5.00

6.00

8.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

55.00

60.00
65.00

70.00

72.00

74.00

76.00

78.00

80.00

82.00

84.00

86.00

88.00

90.00

92.00

94.00

-0.994 -3.266 - - -3.762 -- -3.149

0.037 -1.909 -2.355 -4.197 -3.080 -4.560 -2.673 -3.014

0.513 -2.789 -2.031 -4.509 -2.814 -4.710 -2.440 -3.847

0.827 -3.132 -1.789 -4.736 -2.634 -4.871 -2.272 -3.997

1.064 -3.383 -1.585 -4.922 -2.470 -5.015 -2.153 -4.096

1.300 -3.635 -1.387 -5.102 -2.325 -5.137 -2.034 -4.195

1.468 -3.812 -1.261 -5.206 -2.221 -5.212 -1.955 -4.246

1.613 -3.965 -1.134 -5.310 -2.117 -5.288 -1.875 -4.297

1.759 -4.118 -1.008 -5.414 -2.013 -5.364 -1.796 -4.349

2.260 -4.657 -0.573 -5.709 -1.670 -5.583 -1.522 -4.502

2.626 -5.070 -0.233 -5.994 -1.395 -5.722 -1.304 -4.605

2.895 -5.408 0.045 -6.170 -1.156 -5.816 -1.114 -4.705

3.119 -5.702 0.287 -6.305 -0.944 -5.888 -0.946 -4.728

3.489 -6.204 0.717 -6.509 -0.573 -5.983 -0.647 -4.743

3.785 -6.617 1.090 -6.648 -0.236 -6.028 -0.369 -4.751

4.348 -7.396 1.872 -6.841 0.489 -6.016 0.231 -4.677

4.753 -7.930 2.501 -6.883 1.093 -5.892 0.738 -4.517

5.000 -8.306 3.005 -6.800 1.620 -5.682 1.192 -4.293

5.174 -8.474 3.437 -6.639 2.088 -5.406 1.600 -4.021

5.282 -8.569 3.812 -6.407 2.508 -5.068 1.971 -3.651

5.322 -8.557 4.133 -6.090 2.891 -4.597 2.312 -3.349

5.296 -8.433 4.404 -5.597 3.243 -4.220 2.622 -2.956

5.202 -8.121 4.629 -5.199 3.563 -3.705 2.901 -2.525

5.069 -7.788 4.814 -4.620 3.854 -3.119 3.158 -2.033

4.920 -7.189 4.974 -3.909 4.111 -2.433 3.390 -1.394

4.748 -6.269 5.103 -2.985 4.350 -1.499 3.595 -0.846

4.506 -5.058 5.167 -1.718 4.552 -0.620 3.772 -0.785

4.300 -4.509 5.177 -1.346 4.617 -0.191 3.822 0.248

4.216 -3.752 5.176 -0.828 4.669 0.251 3.863 0.586

4.057 -3.402 5.164 -0.298 4.714 0.707 3.899 0.931

3.888 -2.811 5.142 0.243 4.750 1.166 3.931 1.274

3.710 -2.198 5.109 0.784 4.779 1.621 3.957 1.610

3.524 - 1.598 5.064 1.304 4.799 2.054 3.979 2.061

3.328 - 1.037 5.005 1.796 4.808 2.459 3.991 2.250

3.123 -0.549 4.934 2.233 4.803 2.970 3.992 2.486

2.904 -0.145 4.844 2.597 4.780 3.190 3.977 2.713

2.672 0.196 4.726 2.930 4.740 3.387 3.943 2.895

2.429 0.468 4.577 3.148 4.671 3.576 3.888 3.033

2.179 0.665 4.401 3.246 4.573 3.707 3.809 3.128
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Table2(a).Concluded.

HarrierYAV-88wing ordinates, in.

r/= 0.25 r/= 0.47 r/= 0.64 r/= 0.79"

Station Upper Lower Upper Lower Upper Lower Upper Lower

percent surface surface surface surface surface surface surface surface
96.00 1.922 0.785 4.196 3.309 4.445 3.774 3.707 3.172

98.00 1.662 0.779 3.971 3.285 4.298 3.773 3.586 3.164

100.00 1.401 0.680 3.729 3.155 4.137 3.688 3.451 3.081

*Note: the manufacturer provided dimensions for 7/= 0.79 but the orifice row was as r/= 0.78
because of access hatch location.
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Table2(b).Locationof orifices,percentchord.

Orifice 7/=0.25 r/= 0.47 r/= 0.64 _7= 0.78

order Upper Lower Upper Lower Upper Lower Upper Lower
1 2.5 7.5 4 7.5 5 7.5 5 7.5

2 12 12.5 14 12.5 20 12.5 22 12.5

3 20 17.5 20 17.5 30 22.5 30 22.5

4 25 22.5 30 22.5 40 32.5 40 32.5

5 30 32.5 40 32.5 45 42.5 45 42.5

6 40 42.5 50 42.5 50 -52-.5- 50 52.5

7 50 (52.5) 55 52.5 55 57.5 55 57.5

8 55 57.5 60 57.5 60 67.5 60 67.5

9 60 62.5 65 62.5 65 72.5 65

10 65 67.5 70 6_.5- 70 70

11 70 72.5 75 72.5 74 75

12 75 77.5 80 77.5

13 85 -82-.5- 85 82.5

14 90 87.5 90 87.5

15 98.4 97.5 100 97.5

C,in. 126.0 96.5 75.4 61.6

Note: a location "slashed-out," as--52-.5-, means orifice was inoperative for all flights.

A location indicated as (52.5) means orifice was inoperative for some flights.
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APPENDIX A
SURFACEPRESSURECOEFFICIENTS, PYLONS ON, lip _ 20,000FT

M _, dog
1 .456 8.8

2 .504 8.2

3 .640 5.1

4 .747 3.3

5 .800 2.7

6 .803 2.9

7 .805 2.7

8 .842 2.3

9 .Us-) 2.2

6O
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Table A-1

MINE =

HP=

PSINF =

PRI =

QBAR =
ALPHA =

X/C CP

r/= 0.25
.025 -1.257

.120 -.824

•200 -.704

.250 -.601

.300 -.647

.400 - .503

.500 - .404

.550 -.357

.600 - •405

.650 -.318

.700 -.282

.750 -.242

•850 -.119

.900 -.057

.984 -.040

.456

20229

963.2

951.3

140.1

8.8

Upper surface
X/C CP X/C CP X/C CP

_7= 0.47 _ = 0.64 77= 0.78
.040 -1.525 .050 -1.432 .050 -1.492

.140 -.848 .200 -.756 .220 -.672

.200 -.775 .300 -.743 .3(X) -.707

.300 -.649 .400 -.543 .4(X) -.556

.400 -.568 .450 -.514 .450 -.487

.500 -.474 .500 -.479 .500 -.451

.550 -.448 .550 -.425 .550 -.448

.600 -.374 .600 -.371 .600 -.438

.650 -.393 .650 -.384 .650 -.398

.700 -.393 .700 -.391 .7(X) -.494

.750 -.283 .740 -.317 .750 -.388

.800 -.283

.850 -.214

.900 -. 169

1.(X)O -.018

X/C CP

7]= 0.25
.075 .280

•125 .297

.175 .166

.225 .136

.325 .040

.425 -.188

.525 -.294

.575 -.40I

.625 -.442

.675 -.343

.725 -.342

.775 -.085

.825 .011

.875 .109

.975 .033

Lower surface

X/C CP

= 0.47
.075 .147

.125 .160

•175 .050

•225 -.005

.325 -.021

.425 -. 160

.525 -.218

.575 -.224

.625 -.259

.725 -.086

.775 .001

.825 .(YO3

.875 .211

.975 .177

X/C CP

= 0.64
.075 .241

.125 .175

.225 -.085

.325 -.141

.425 -.194

.525 -.248

.575 -.303

.675 -.149

.725 -.119

X/C CP

= 0.78
.075 .126

.125 .035

.225 -.088

.325 -.152

.425 -.215

.525 -.226

.575 -.196

.675 -.080
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TableA-2

MINF=
lip =
PSINF=
PRI=
QBAR=
ALPItA=

.50q
20423

955.4
939.8
169.8

8.2

X/C
71

.025
•120

.200

.250

.300

.400

.500

.550

.600

.650

.700

.750

.850

.900

.984

CP

= 0.25

- 1.261

-.784

- .665

-.557

- .566

- .470

-.387

-.342

-.386

-.321

-.281

-.251

-.123

-.056
-.039

Upper surR_ce
X/C CP

_/= 0.47
.0-10 -1.464

.140 -.817

.200 -.749

.300 -.632

.400 -.553

.5o0 -.463

.550 -.440

.600 -.375

.650 -.389

.700 -.389

.750 -.283

.800 -,283

.850 -.2t8

.900 -. 170

1.000 -.013

x/C CP

= 0.64
.050 1.357

.200 -.725

.300 -.723

.400 -.520

.450 -.496

.500 - .469

.550 -.417

.600 -.369

.650 -.383

.7oo -.381

.740 -.311

[_+owcrsurface

X/C CP X/C CP X/C CP

_/= 0.25 7/= 0.47 7/= 0.64
.075 .276 .075 .098 .075 . 191

•125 .274 . 125 .121 .125 .134

.175 .153 .175 .019 .225 -.126

.225 .120 ,225 -.040 •325 -.172

.325 .008 .325 -.051 .425 -.206

.425 -.202 .425 -. 190 .525 -.262

.525 -.304 .525 -.237 .575 -.318

.575 -.405 .575 -.250 .675 -. 158

.625 -.450 .625 -.277 .725 -. 119

.675 -.356 .725 -.095

.725 -.333 .775 - .006

.775 -. 108 .825 .()94

.825 -.00t .875 .212

.875 .105 .975 .181

.975 .044

X/C CP

7/ = 0.78
.050 --I.378

.220 --.640

.300 --.689

.400 --.532

.450 --.453

.500 --.435

.550 --.431

•600 --.417

.650 --.383

.700 --.487

.750 --.367

X/C CP

= 0.78
.075 .088

•125 -. 107

•225 -.120

.325 -.167

.425 -.242

.525 -.239

.575 -.211

.675 -.088

J
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MINF=

HP=

PSINF =

PRI =

QBAR =
ALPHA =

.640

20352

958.2

925.1

274.4

5.1

Table A-3

LJl?pcr surface
X/C CP X/C CP

r/ : 0.25 r1 : 0.47
.025 -I.002 .040 -I.229

.120 -.652 .140 -.646

.200 -.568 .200 -.641

.250 -,512 .300 -.546

.300 -,485 .400 -.495

.400 -,433 .500 -.428

.500 -.375 .550 -.408

.550 -.351 .600 -.355

.600 -.355 .650 -.368

.650 -.333 ,700 -.368

.700 --.298 .750 -.292

.750 -.295 .800 -.292

.850 --.153 .850 -.214

.900 -.087 .900 -. 175

.984 -.073 1.000 .013

Lower surface

X/C CP

7/ = 0.64
.050 --.939

,2OO --.585

.300 --.654

.400 -- .454

.450 -- .424

.500 --.434

.55O --.384

.600 --.352

.650 --.361

.700 --.368

.740 --.295

X/C CP X/C CP

r/: 0.25 rj = 0.47
.075 .172 .075 -. 168

•125 .157 ,125 -.063

•175 .046 ,175 -.171

.225 -.012 .225 -.210

.325 -.133 •325 -.216

.425 -.303 .425 -.350

.525 -.380 .525 -.358

.575 -.457 .575 -.370

.625 -.501 .625 -.382

.675 -.419 .725 -. 151

.725 -.353 .775 -.047

.775 -.203 .825 .073

.825 -.079 .875 .192

.875 .044 .975 . 190

.975 .041

X/C CP

77= 0.64
.075 - .100

•125 -.098

.225 -.378

.325 -.338

.425 -.331

.525 -.387

.575 - ,444

.675 -.226

.725 -.166

X/C CP

= 0,78
.050 -.909

.220 -.502

•3(X) -.604

.400 -.444

.45O -.386

.5(×) -.380

.550 -.380

.60O -.361

.650 -.336

.700 - .456

.750 -.343

X/C CP

rl = 0.78
.O75 -.212

• 125 -.250

,225 -.321

.325 -.344

.425 -.393

,525 -.340

.575 -.312

.675 -. 145



TableA-4

MINF =

HP=
PSINF =

PRI =

QBAR =
ALPIIA =

,747

20350

)3_S.3

905.3

373.9

3.3

Upl)Cr sur l:lce
X/C CP X/C CP

r/: 0.25 7/: 0.47
.025 -.753 .040 -I.161

.120 -.589 .140 -.544

.200 -.532 .200 -.611

.250 -.493 .300 -.520

.300 -.464 .400 -.487

.400 -.429 .500 -.427

.500 -.380 .550 -.410

.550 -.353 .600 -.368

.600 --.353 .650 -.380

.650 -.350 .700 -.380

.700 -.323 .750 -.314

.750 -.330 .800 -.314

.850 -.166 .850 -.215

.900 -.101 .900 -.172

.984 -.089 1.000 .028

X/C CP

: O.25
.075 .106

•125 .O89

.175 -.017

.225 -.095

.325 -.226

.425 -.357

.525 -.423

.575 -.490

.625 -.545

.675 -.446

.725 -.384

.775 -.264

.825 -. 147

•875 -.030
.975 .001

X/C CP

= 0.64
.050 -.672

.200 -.532

.3OO -.662

.400 -.435

.450 -.405

.500 -.436

.550 -.387

.600 -.353

.650 -.356

.700 -.384

.740 -.288

Lower surlitce

X/C C P

: 0.47
.075 -.384

.125 -.184

.175 -.286

.225 -.323

.325 -.326

.425 -.512

.525 -.475

.575 -.472

.625 -.472

.725 -.173

.775 .034

.825 .030

.875 .133

.975 .196

X/C CP

7/: 0.64
.075 -.270

.125 -.235

.225 -.697

.325 -.450

.425 -.419

.525 -.497

.575 -.574

.675 -.280

•725 -.211

X/C CP

= O.78
.050 -.662

.220 -.461

.300 -.595

.400 -.433

.450 -.376

.500 -.375

.550 -.374

.600 -.350

.65O -.327

.700 -.472

.75O -.346

X/C CP

: 0.78
.075 -.459

•125 --.477

.225 -.484

.325 -.515

.425 -.524

.525 -.409

.575 -.357

.675 -.164
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MINF ---

HP=

PSINF =

PRI =

QBAR =
ALPHA =

.800

20454

954.1

887.0

427.1

2.7

Table A-5

Upper surface
X/C CP X/C CP

r/= 0.25 77= 0.47
.025 -.598 .040 -.970

.120 -.585 .140 -.641

.200 -.582 .200 -.548

.250 -.505 .300 -.523

.300 -.470 .400 -.501

.400 -.451 .500 -.452

.500 -.401 .550 -.429

.550 -.370 .600 -.392

•600 -.374 .650 -.401

.650 -.375 .700 -.401

.700 -.358 .750 -.335

•750 -.372 .800 -.335

.850 -.189 .850 -.229

•900 -.121 .900 -.173

.984 -.091 1.000 .037

Lower surface

X/C CP

= 0.64
.050 -.887

.200 -.572

.300 -.902

.400 -.453

.450 -.418

.500 -.464

.550 -.412

.600 -.373

.650 -.378

.700 -.421

.740 -.307

X/C CP X/C CP

= 0.25 _ = 0.47
.075 .105 .075 -.514

.125 .088 .125 -.205

.175 -.018 .175 -.309

.225 -.095 .225 -.336

.325 -.253 .325 -.335

.425 -.356 .425 -.568

•525 -.444 .525 -.738

•575 -.532 .575 -.671

,625 -.636 .625 -.470

•675 -.504 .725 -.173

.725 -.397 .775 -.080

•775 -.284 .825 -.002

.825 -.191 .875 .119

.875 -.097 .975 .185

.975 -.076

X/C CP

= 0.64
.075 -.286

.125 -.232

.225 -.665

.325 -1.111

.425 -.404

.525 -.547

.575 -.690

.675 -.288

.725 -.216

X/C CP

77= 0.78
.050 --.853

.220 --.517

.300 --.619

.400 -.458

.450 -.389

.500 -.394

.550 -.398

.6OO -.364

.650 -.341

.700 -.524

.75O -.365

X/C CP

= 0.78
.075 -.478

.125 -.700

.225 -.477

.325 -.528

.425 -.839

.525 -.383

.575 -.341

.675 -.153
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Table A-6

MINF = .803

HP= 20489

PSINF= 952.7

PRI = 885.8

QBAR = 429.6

ALPHA = 2.9

Upper surlacc

X/C CP X/C CP X/C CP X/C CP

rl = 0.25 77= 0.47 rl = 0.64 r1 = 0.78

•025 -.590 .(blO -.944 .050 -.930 .050 - 1.052

• 120 -.611 .140 -.937 .200 -.608 .220 .563

.200 -.601 .200 -.514 .300 -.938 .300 -.649

•250 -.530 .300 -.516 .400 -.460 .400 .463

.300 -.477 .400 -.502 .450 -.424 .450 -.389

.400 -.457 .500 -.457 .500 -.469 .500 -.397

•500 -.406 .550 -.430 .550 -.416 .550 --.400

•550 -.368 .600 -.389 .600 -.375 .600 -.368

.600 -.380 .650 -.398 .650 -.382 .650 .344

.650 -.370 .700 -.398 .700 -.425 .700 -.551

•700 -.348 .750 -.334 .740 -.320 .750 -.379

•750 -.364 .800 -.334

•850 -.187 .850 -.229

.900 -.116 .900 -.175

.984 -.085 1.000 .038

[.owcr SU I'f_.ICC

X/C CP X/C CP X/C CP X/C CP

r7= 0.25 rl = 0.47 r7 = 0.64 77= 0.78

.075 . 119 .075 -.491 .075 -.271 .075 -.453

.125 .108 .125 -.190 .125 -.214 .125 -.672

.175 -.002 .175 -.294 .225 -.651 .225 -.466

.225 -.074 .225 -.320 .325 -I.142 .325 -.511

.325 -.245 .325 -.324 .425 -.398 .425 -.823

.425 -.338 .425 -.555 .525 -.552 .525 .365

.525 -.447 .525 -.727 .575 -.706 .575 -.327

.575 -.555 .575 -.757 .675 -.282 .675 -.14t

.625 -.623 .625 -.460 .725 -.205

.675 -.521 .725 -.175

.725 -.422 .775 -•085

.775 -.282 .825 -.003

•825 -.191 .875 .118

•875 -.101 .975 .187

.975 -.079

Z7
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MINF=

liP=

PSINF =

PR1 =

QBAP, =

ALPt tA =

•805

2()569

949.5

882.3

431.2

2.7

Table A-7

Upper surface

X/C CP X/C CP

r/: 0.25 r/= 0.47

.025 -.577 .040 -.924

• 120 -.664 .140 -.836

.200 -.578 .200 -.512

.250 -.510 .300 -.514

.300 -.472 .400 -.495

.400 -.451 .500 -.451

.500 -.404 .55C) -.428

.550 -,360 .600 -.389

.600 -.385 .650 -.394

.650 -.366 .700 -.394

.700 -.346 .750 -,337

.750 -.356 .8C)C) -.337

.850 -.185 .850 -.227

.900 -.112 .900 -.177

.984 -.088 1.000 .036

Lower Sulf[Icc

X/C CP

= 0.64

.050 -.882

.200 -.602

.300 -.926

.4OO -.452

.450 - .415

.500 -.465

.550 -.413

.600 -.373

.650 -.382

.700 .433

.740 -.335

X/C CP X/C CP

r/= 0.25 r/= 0.47

.075 .113 .075 -.514

• 125 .115 .125 -.200

• 175 -.004 .175 -.304

.225 -.071 .225 -.329

.325 -.244 .325 -.330

.425 -.332 .425 -.559

.525 -.465 ,525 -.721

.575 -.598 .575 -.777

.625 -.613 .625 -.444

.675 -.517 .725 -.174

.725 -.442 .775 -.091

.775 -.273 .825 -.006

.825 -.194 .875 .115

.875 -.116 .975 .183

.975 -.094

X/C CP

= O.64

.075 -.284

.125 -.226

.225 -.65 I

.325 -I.160

.425 -.395

.525 -.549

.575 -.702

.675 -.272

.725 -.200

X/C CP

7] = 0.78

.050 -.926

.220 -.552

.300 -.639

.400 -.461

.45O -.387

.500 -,397

.550 -,401

.600 -.374

.650 -.349

.700 .573

.750 -.410

X/C CP

: 0.78

.075 -.463

.125 -.683

.225 -.439

.325 -,512

.425 .819

.525 -.354

.575 -.318

.675 -.132

67



MINF=
HP=
PSINF=
PRi=
QBAR=
ALPHA=

X/C CP
77= O,25

.025 -.463
•120 -.727
.200 -.594
.250 -.569
.300 -.589
.400 -.444
.500 -.420
.550 -.389
.600 -.394
.650 -.391
.700 -.377
.750 -.403
.850 -. 187
.900 -.116
.984 -.088

X/C CP
77: O.25

.075 .117
•125 .105
.175 -.02 I
.225 -.042
.325 -.352
.425 -.390
.525 -.436
.575 -.481
.625 -.603
.675 -.687
.725 -.597
.775 -.320
.825 -.204
.875 -.090
.975 -.070

TuNeA-8

.842
20547

950.4
873.8
472.1

2.3

Upper surfacc

X/C CP X/C CP

77= 0.47 77= 0.64

.040 -.818 .050 -.782

• 140 -1.068 .200 -,804

.200 -.593 .300 -.721

.300 -.427 .400 -.485

.400 -.523 .450 -.417

.500 -.466 .500 -.511

.55(] -•439 .550 -.456

.600 -.414 .600 -.383

.650 -.405 .650 -.381

.700 --.405 .700 -•458

.750 -.337 .740 -.330

.800 -.337

.850 -.217

.900 -, 152

1.(X)(] .054

Lower Sl.ll'[_[l CC

X/C CP

77= 0.47

.075 -,558

• 125 -.209

.175 -.314

.225 -.331

.325 -.313

.425 -.595

.525 -.69(I

.575 -.712

.625 -.954

.725 -.230

.775 -. 14 I

.825 -.067

.875 .029

.975 .113

X/C CP

77= 0.64

.075 -.285

.125 -.210

.225 -.592

.325 -1.128

.425 -.635

.525 -.735

.575 -.834

.675 -.277

.725 -.21 I

X/C CP

77= 0.78

.050 -.978

.220 - ,407

.300 -.944

.4O0 -.494

.450 -.447

.500 -.393

.550 -.417

.600 - .368

.650 -.338

.700 -.606

.750 -.381

X/C CP

77 = 0.78

.075 -.436

• 125 -.631

,225 -.884

.325 - .655

.425 -.680

.525 -.342

.575 -.275

.675 -.129
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MINF =

HP=

PSINF =

PRI =

QBAR =

ALPIIA =

.859

20659

945.9

861.8

488.8

,2

Table A-9

Upper surlhce

X/C CP X/C CP

rj = 0.25 _7= 0.47

.025 -.405 .040 -,766

• 120 -.635 .140 -1.026

.2()0 -.585 .200 -.651

.250 -.535 .300 -,571

.300 -.591 .400 -.560

.400 -.587 .500 -.578

.500 -.486 .550 -.382

.550 -.347 .600 -.355

.600 -.396 .650 -.378

.650 -.386 .700 -.378

.700 -.398 .750 -.338

.750 -,443 .800 -.338

.850 -.175 .850 -.208

.900 -.100 .900 .127

.984 -.084 1.000 .049

X/C CP

77= 0.25

.075 .129

.125 .121

.175 -.019

.225 - .028

.325 -.290

.425 -.657

.525 -.582

.575 -.508

.625 -.516

.675 -.664

.725 - .629

.775 -.394

.825 -.237

.875 -.081

.975 -.057

X/C

rj
.050

.200

.300

.400

.450

,500

.550

.600

.650

.700

.740

LO\VCI" Sl.ll'l't|CC

X/C CP

= 0.47

.075 -.537

.125 -.199

.t75 --.312

.225 -.320

.325 -.306

.425 -.609

.525 -.665

.575 -.673

.625 -.844

.725 -.263

.775 -.227

.825 -. 162

.875 -.O8O

,975 .001

CP

= 0,64

-,726

-.810

-.830

-.529

-.456

-.392

-.383

-.399

-.394

-.486

-.398

X/C CP

77= 0.78

.050 - .930

.220 --.832

.3OO -,893

.400 -.360

.450 -.342

.500 - .400

.55O - .453

.600 - .389

.650 - .326

.700 -.580

.750 --.554

X/C CP X/C CP

= 0.64 T/= 0.78

.075 -.289 .075 .414

• 125 -.207 .125 .613

.225 -.571 .225 .855

•325 -1.102 .325 -.783

.425 -.627 .425 -.687

.525 -.734 .525 -.430

.575 -.840 .575 -.224

.675 -.302 .675 -.133

.725 -.259

69



APPENDIX B

SURFACE PRESSURE COEFFICIENTS, PYI.ONS ON, lip ._ 30,000 FT

M c_, dog
1 .642 7.O

2 .747 5.0

3 .796 4.2

4 .841 5.2

5 .843 3.4

6 .874 4.0

7 .876 3.5

8 .877 2.7

=

70
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Table B- 1

MINF =

HP=

PSINF =

PRI =

QBAR =
ALPHA =

X/C CP

= 0.25
.025 -1.108

.120 -.777

.200 -.668

.250 -.624

.300 -.556

.400 -.505

.500 -.423

.550 -.421

.600 -.384

.650 -.369

.700 -.326

.750 -.333

.850 -.167

.900 -.111

.984 -.O74

.642

30100

625.6

608.4

180.7

7.0

Upper surface
X/C CP X/C CP X/C CP

= 0.47 _ = 0.64 _ = 0.78
.040 -1.757 .050 -1.895 .050 -1.403

.140 -.912 .200 -.719 .220 -.634

.200 -.750 .300 -.750 .300 -.694

.300 -.634 .400 -.528 .400 -.530

.400 -.558 .450 -.497 .450 -.463

.500 -.479 .500 -.480 .500 -.431

.550 -.446 .550 -.432 .550 -.426

.600 -.386 .600 -.378 .600 -.408

.650 -.403 .650 -.382 .650 -.370

.700 -.403 .700 -.377 .700 -.468

.750 -.276 .740 -.289 .750 -.341

.800 -.276

.850 -.211

.900 -.153

1.000 -.025

X]C CP

= 0.25
.075 .227

.125 .181

.175 .092

.225 .029

.325 -.104

.425 -.256

.525 -.325

.575 -.394

.625 -.470

.675 -.413

.725 -.286

.775 -.207

.825 -.069

.875 .070

.975 .042

Lower surface

X/C CP

= 0.47
.075 -.025

.125 .035

.175 -.074

.225 -.121

.325 -.137

.425 -.287

.525 -.320

.575 -.332

.625 -.359

.725 -.139

.775 -.051

.825 .063

.875 .184

.975 .166

X/C CP

= 0.64
.075 .078

.125 .041

.225 -.257

.325 -.269

.425 -.293

.525 -.365

.575 -.436

.675 -.237

.725 -.201

X/C CP

= 0.78
.075 -.044

.125 -.127

.225 -.221

.325 -.279

.425 -.353

.525 -.337

.575 -.310

.675 -.158
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TuNe B-2

MINF =

liP=

PSINF =

PRI =

QBAR =

AI.PI IA =

X/C CP

r/: O.25

.025 .787

.120 -.757

,200 -.622

.250 -.572

.300 -.519

.400 --.478

.500 --.407

.55O -.397

.60O -.372

.650 -.371

.700 -.345

.750 -.354

.850 --. 176

.900 -.113

.984 -.086

X/C CP

77: 0.25

.075 .177

.125 .143

• 175 .047

.225 -.029

.325 -. 160

.425 -.315

.525 -.378

.575 -.440

.625 -,536

.675 -.460

.725 -.353

.775 --.261

.825 -. 122

.875 .014

.975 .019

.747

30346

618.6

589.1

241.8

5.0

Uppcr surface
X/C CP

: 0.47

.040 -1.314

.14(1 -.956

.20O .61 I

.300 --.563

.4OO .533

.500 -.468

.550 -.445

.600 -.388

.650 - .407

.700 -.407

.750 .305

.8(]0 -.305

.850 -.224

.9OO -. 163

1.000 .017

X/C CP

rl = 0.64

.050 -1.364

.20(J -.590

.30(] -.732

.4(X) -.495

.45O -.463

.500 -.474

.550 -.424

.6(X) -.377

.650 -.377

.700 -. 387

.740 -.285

[.owcr _u l-I:lcc

X/C ('P

rl = 0.47

,075 -.218

• 125 --.083

.175 -.188

.225 .232

.325 -.248

.425 -.43 I

.525 -.435

•575 -.440

.025 .453

.725 -.162

•775 -.055

.825 .044

.873 -_• 13:

.975 ,191

X/C CP

_7 : 0.64

.075 -, 104

.125 -.JO4

.225 -,530

.325 -.392

.425 -.383

.525 -.47 I

.575 -.559

.675 -.282

.725 -.225

X/C CP

: 0.78

.050 -I.592

.22(] -.561

.300 -.665

.400 --.505

.45O -.431

.500 -.419

.550 -.415

.600 -.389

.65O - .357

.700 -.482

.750 -.334

X/C CP

= 0.78

.075 -.262

• 125 -.298

.225 --.369

.325 -.427

.425 -.480

.525 -.4O5

.575 -.367

.675 -. 180
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MINF =

HP=

PS1NF =

PRI =

QBAR =
ALJ_tlA =

X/C CP

r/: 0.25

.O25 -.651

• 120 -.849

•200 -.712

.250 -.648

.300 -.522

.400 -.475

,5C)C) -.411

.550 -.395

.600 -.375

.650 -.381

.700 -.357

.750 -.368

•850 -.175

.900 -. 114

.984 -.087

X/C CP

: O.25

.075 .163

.125 .134

• 175 .034

.225 -.046

.325 -.175

.425 -.365

.525 -.413

•575 -.461

.625 -.675

.675 -.487

.725 -.361

.775 -.277

.825 -. 154

.875 -.032

.975 -.001

"K_blc B-3

.796

30309

619.6

581.1

274.8

4,2

Ui)pcr stir f:lcc

X/C CP

77 : 0.47

.040 --I.078

• 140 -1.308

.200 -.733

.300 -.480

.400 -.5 I0

.500 -.464

.550 -.446

.600 -.399

.050 -.414

.700 -.414

.750 -.322

.800 -.322

.850 -.229

.900 -. 164

1.000 .030

X/C CP

r/= O.64

.050 -1.115

.2O0 -.922

•300 -.610

.400 -.46 l

.450 -.445

.5(X) -.474

.550 -.429

.600 -.380

.650 -.385

.700 -.405

.740 -.295

[A.IWOI MII'I].ICC

X/C CP

r/: 0.47

.075 -.319

.t25 -.125

.175 -.231

.225 -.266

.325 -.278

.425 -.507

.525 -.680

.575 -.490

.625 -.490

.725 -.168

.775 -.072

.825 .002

.875 .121

.975 .197

X/C CP

r/= 0.64
.075 -. 170

.125 -.136

.225 -.615

.325 -.383

.425 -.411

.525 -.541

.575 -.671

.675 -.294

.725 -.230

X/C CP

= 0.78

.050 -I.341

.220 -.467

.300 -.629

.400 -.501

,450 -.426

.500 -.419

.550 -.422

.600 -- •389

.65O -.358

.700 -.520

.75O -.346

X/C CP

r/= 0.78

.075 -.375

.125 -.428

.225 -.438

.325 -.494

.425 -.629

,525 -.4 t4

.575 -.368

.675 -.173

3



l'ublc B-4

MINF--

HP--

PSINF=

PRI --

QBAR =
ALPHA =

X/C CP

= 0.25
.025 -.636

.120 -.891

.200 -.852

.250 -.768

.300 -.751

.400 -.737

.500 -.719

.550 -.685

.600 -.426

.650 -. 340

.700 -.308

.750 -,316

.850 -. 136

.900 -,078

.984 -,068

X/C CP

= 0.25
.075 .233

.125 .199

•175 ,090

.225 ,055

.325 -.2O3

.425 -. 196

.525 -.344

.575 -.491

.625 -.526

.675 -.662

.725 -.520

.775 -.322

.825 -. 161

.875 .001

.975 -.016

.841

303 [6

619.7

583.0

306.8

5.2

Upper surface
X/C CP

= 0.47
.040 -1.026

•140 -I.295

.200 -1.178

.300 - 1._.215

.400 -.825

.500 -.778

.550 -.710

.600 -.343

.650 -.304

.700 -.304

.750 -.247

.800 -,247

.850 -. 170

.900 -. I 13

1.000 .042

x/C CP

= 0.64
.050 -I.068

.2(X) -1.193

.300 -1.211

.400 -1.184

.450 -I.158

.500 -.783

.55O -.558

.600 -.334

.650 -.234

.700 -.210

.740 -. 175

Lower stl rl_tcc

X/C CP X/C CP

r/= 0.47 r/= 0.64
.075 -.246 .075 -.067

•125 -.050 .125 -.042

•175 -. 157 .225 .500

.225 -.197 .325 -.951

.325 -.206 .425 -.366

.425 -.444 .525 -.546

.525 -.632 ,575 -.726

.575 -.683 .675 -.274

.625 -.527 .725 -.214

.725 -. 173

.775 -.084

.825 .O3O

.875 . [40

.975 .212

X/C CP

= 0.78
.050 -1.282

,220 -1.155

.300 -1.291

,4C)0 -1.116

.450 -.957

.500 -.650

.550 -.543

.60O .371

.65O -.205

.7OO -.236

.750 -.201

X/C CP

= 0.78
.075 -.289

•125 -.468

.225 -.373

.325 -.422

.425 -.731

.525 -.294

.575 -.296

.675 -.148

74
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M1NF =

tt P=

PSINF =

PRI =

QBAR =

At.PI IA =

X/C CP

r/= 0.25

.025 -.536

• 120 -.748

.200 -.697

.250 -.63(}

.300 -.(,55

.400 -.648

.500 -.423

.550 -.367

.600 -.367

.650 -.389

.700 -.393

.750 -.408

.850 -.181

.900 -. 116

.984 -.075

X/C CP

7/= O.25

,075 .155

.125 .128

.175 .015

,225 -.023

.325 -.323

.425 -.255

.525 -.404

.575 -.553

.625 -.568

.675 -.620

.725 -.555

.775 -.312

.825 -.188

.875 -.065

.975 -.061

rRtblc B-5

.843

30400

617.1

574.9

3O7.3

3.4

Ui)l-}cr surlitcc
X/C CP X/C CP X/C CP

r_= 0.47 _ = 0.64 _ = 0.78

.040 -.870 .050 -.897 .050 -1.117

• 140 -I.109 .2(X) -.989 .220 -.926

.200 -I.014 .300 -I.126 .300 - 1.219

.300 -.671 .400 - .465 .400 .341

.400 -.(}(}g .450 -.350 .45(} - .283

.500 -.39(} .500 -.343 .500 - .309

.550 -.388 .550 -.340 .550 -.360

.600 -.369 .600 -.335 .600 -.355

.650 -.395 .650 -.352 .650 -.335

.700 -.395 .700 -.403 .700 -.566

.750 -.325 .740 -.305 .750 -.353

.800 -.325

,850 -.216

.900 -. 144

1,000 .033

] +o',,vcr suIftLCL'

X/C CP

= 0.47

.075 -.457

.125 -.154

• 175 -.257

.225 -.282

.325 -.276

.425 -.538

.525 - .668

.575 -.706

.625 -.875

.725 -.208

.775 -.t25

.825 -.021

.875 .075

.975 .141

X/C CP

7_= 0.64

.075 -.205

• 125 -. 145

.225 -.563

.325 -1.068

.425 -.584

.525 -.687

.575 -.790

.675 -.293

.725 -.233

X/C CP

r/= 0.78
.{}75 -.389

• 125 -.594

.225 -.846

.325 .415

.425 -.748

.525 -.325

.575 -.280

.675 .146
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Table B-6

MINF =

H P=

PSINF=

PRI =

QBAR =

ALPffA =

X/C CP

= 0.25
.025 -.484

• 120 -.742

.200 -.734

.250 -.662

.300 -.666

.400 -.680

.500 -.654

.550 -.645

.600 -.650

•650 -.594

.700 -.631

.750 -.458

.850 .147

.900 -.086

.984 -.065

X/C CP

= 0.25

,075 .196

.125 .168

• 175 .044

.225 .024

.325 -.200

.425 -.575

.525 -.493

.575 -.412

.025 -.461

.675 -.626

.725 -.603

,775 -.600

.825 -.313

.875 -.025

.975 -.013

.874

30480

614.8

566.8

328.5

4.0

Upper surf:tee
X/C CP

: 0.47

.040 -•836

• 140 -I,094

.200 -I.007

.300 - 1.029

.400 -.712

.500 -,7 t4

.550 -.744

.600 -,718

.650 -.762

.700 -.762

.750 - .238

.800 -.238

.850 -. 173

.900 -. I 15

1.000 -.010

X/C CP

= 0.64

.05O -.865

.200 -I.042

.300 -1.075

.4(X) -I.024

,450 - 1.004

.500 -,971

.550 -.736

.6(X) -.716

.650 -.706

.700 -.474

.740 -.263

Lower sull].lCC

X/C CP X/C CP

r/= 0.47 r/= 0.64

.075 -.406 .075 -. 148

• 125 -.113 .125 -.087

• 175 -.218 .225 -.498

.225 -.243 .325 -1.003

.325 -.236 .425 -.59 l

.425 -.513 .525 -.684

.525 -.612 .575 -.776

•575 -.632 .675 -•282

.625 -.926 .725 -.246

.725 -.272

.775 -.222
y-).8.5 -. 135

.875 -.028

.975 .096

X/C CP

= O.78

.050 -1,074

.220 -.963

.300 -I.173

.400 -.997

.450 -.979

.500 -.984

.550 -.964

.600 -.737

.650 -.581

.700 -.415

.750 -.255

X/C CP

= 0.78

.075 -.326

• 125 -.523

.225 -.774

.325 -.496

.425 .663

.525 -.765

.575 -.232

.675 -.147
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"Ed)I: 13-7

MINI = =

t t P=

PSINV =

PRI :

QBAR :

ALPHA :

X/C CP

: O.25

.025 -.471

.120 -.718

.200 - .693

.25(t -.634

.300 -.646

.400 -.647

.500 -.639

.550 -.623

.600 .620

.650 -.577

.700 -...621

.750 -.51 I

.850 -. 140

.900 -.085

.984 -.071

.870

3O453

615.0

564.8

33O.4

3.5

Upper surface

X/C CP X/C CP X/C CP

r/= 0.47 rj = 0.64 r_ = 0.78
.040 -.799 .050 -.826 .050 1.034

• 140 1.049 ,200 --.963 .220 -.897

.200 -.961 .300 -1.059 .300 - t.168

.300 -.884 .400 -.952 .400 -.957

.400 -.670 .450 -.841 .450 -.904

.500 -.694 .5(X) -.799 .500 .920

.550 -.716 .550 -.707 .550 -.856

.600 -.702 .600 -.711 .600 -.660

.650 -.732 .650 -.700 .650 - .498

.700 .732 .700 -.538 .700 .405

.750 -.25 I .740 -.281 .750 .270

.800 -.251

.850 -.177

.900 -. 115

1.000 - .009

X/C CP

rl = 0.25

.075 .179

.125 .153

• 175 .024

.225 .OO9

.325 -.210

.425 -.591

.525 -.519

.575 -.448

.625 -.458

.675 -.624

.725 -.597

.775 -.597

.825 -.313

.875 -.037

.975 -.017

L,o wc I S LII[[ICC

X/C CP

71= 0.47
.075 -.437

.125 -.137

.175 -,242

.225 -.263

.325 -.251

.425 -.545

.525 -.024

.575 .64 I

.025 -.923

.725 -.280

.775 -.228

.825 -.157

.875 -.003

.975 .()7()

X/C CP

7/= 0.64

.075 -. 183

.125 -.115

.225 -.509

.325 -1.025

.425 -.603

.525 -.685

.575 -.767

.675 -.284

.725 -.259

X/C CP

r_ = 0.78

.075 -.35 I

.125 - .541

•225 --.787

.325 - .557

.425 .666

.525 - .767

.575 -.247

.675 -. t 60
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_PableB-8

MINF=
HP=
PSINF=
PRI=
QBAR =

ALPItA =

X/C CP

n = O.25

.025 -.440

.120 -.658

.200 -,638

.250 -.594

•300 -.601

.400 -.618

.500 -.6(X}

.550 -.603

,6OO -.557

.650 -.537

.700 -.594

.750 -.566

.850 -. 149

.900 -.089

.984 -.078

X/C CP

.r/= 0.25

.075 ,152

.125 .123

• 175 -.0t7

.225 -.031

.325 -.218

.425 -.620

.525 -.557

.575 -.495

.625 -.466

.675 -.601

.725 -.597

.775 -.6(X)

.825 -.325

.875 -.052

.975 -.025

.877

30671

609.5

553.7

328.0

2.7

Upper surRtce

X/C CP X/C CP X/C CP

7/= 0,47 7/= 0.64 7/= 0.78

.040 -.737 .050 -.746 .050 -.963

.140 - 1.006 .200 -.844 .220 -,849

.200 -.887 .3(X) - 1,034 .300 - 1,156

.300 -,658 .4(X) -.742 .400 -.837

.400 -.626 .450 -.582 .450 -.839

.500 -.664 .50(] -.647 .500 -.791

.550 -.688 .550 -.607 .550 -.653

.600 -.655 .6(X) -.661 ,600 -.555

.650 -.684 .650 -.667 .650 -,381

.700 -.684 .7(X) -.645 .700 -.420

.750 -.276 .740 -.331 .750 -.300

,800 -.276

.850 -. 190

.900 -. 115

1.00{} -.002

Lowcr SUIFHCC

X/C CP

7,9= 0.47

.075 -.492

.125 -.174

.175 -.280

.225 -.298

.325 -.283

.425 -.586

.525 -.645

.575 -.673

.625 -.840

.725 -,287

.775 -.247

.825 -.188

.875 -.I10

.975 .035

X/C CP

r/= 0.64
.075 -.249

• 125 -. 165

•225 -.534

.325 - 1.(/58

.425 -.628

.525 -.686

.575 -.743

.675 -.299

.725 -.285

X/C CP

r_ : 0.78

.075 -.388

.125 -.577

.225 -.816

.325 -.743

.425 .674

.525 -.801

.575 -,290

.675 -. 181
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APPENDIX C

SURFACE I)RI_SSURE COEFFICIENTS, PYLONS ON, lip _ 40,000 FT

3,I _, dog

t .754 7.6

2 .818 5.9

3 .843 5.2
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MINF =

}tP=

PSINF =

PRI =

QBAR =

ALPilA =

X/C CP

= O.25

.025 -1.110

.120 -I.243

.200 -.927

.250 -.717

,300 -.588

.400 -.52 I

.500 .439

.550 -.427

.6O0 .4O5

.650 -.381

.7O0 -.352

.750 -.344

.850 .154

.900 .09 [

.984 - .072

X/C CP

: O.25

.075 .267

• 125 .242

.175 .146

•225 .084

.325 - .O38

.425 -.249

.525 -.320

.575 -.392

.625 -.542

•675 -.506

.725 - .406

.775 -.252

.825 -.103

.875 .046

.975 .033

.754

4O334

385.5

37O.4

153.2

7.6

Table C-I

Upper surface

X/C CP X/C CP

: 0.47 _ : 0.64

.040 - 1.549 .050 -I.576

• 140 -I.789 .200 -1.307

.200 -I.034 .300 -.859

.300 -.850 .400 -.520

.400 -.635 .450 -.474

.500 -.479 .500 -.409

.550 -.441 .550 -.382

.600 -.379 .600 -.330

.650 -,396 .650 -.339

.700 -.39o .700 -.334

.750 .269 .740 -.261

.800 -.2O9

.850 -.204

.900 -. 159

1.000 -.038

LOWCI" ,'-;UI'[;|CC

X/C CP X/C CP

7/= 0.47 r/= 0.64

.075 -.017 .075 .091

• 125 .054 .125 .054

• 175 -])48 ,225 -.320

.225 -. 106 .325 -.294

.325 -. 127 .425 -.323

.425 -.324 .525 -.418

•525 -.370 .575 -.514

.575 -.389 .675 -.259

.625 --.419 .725 -.208

.725 -. 156

.775 -.043

,825 .044

.875 .157

.975 .183

X/C CP

: 0.78

.050 -1.838

.220 -1,099

.300 -.748

.400 -.429

.450 -.390

.500 -.378

.550 -.392

.600 -.383

.650 -.351

•700 -.419

.750 -.304

X/C CP

: 0.78
.075 -.053

.125 -.131

,225 -.232

.325 -.313

.425 -.412

.525 -.389

.575 -.356

.675 -.177

8O
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MINF--

H P--

PSINF =

PRI --

QBAR --

ALPtlA --

•818

40385

384.5

363.0

180.0

5.9

X/C CP

77 : O.25
.025 -.771

• 120 - 1.009

.200 -.930

.250 -.841

.300 -.789

.400 -.773

.500 -.407

.550 -.373

.600 -.360

.650 -.355

.700 -.334

.750 -.329

.850 -. 139

.900 -.080

.984 -.063

Table C-2

X/C CP

77= O.25

.075 .247

.125 .214

.175 •112

.225 .059

.325 -.122

.425 -.220

.525 -.356

.575 -.492

.625 -.572

.675 -.550

.725 -.489

.775 -.278

•825 -. 140

.875 -.000

.975 .038

Upper stu'facc

X/C CP

77 : 0.47
.040 -I.139

• 140 -I.440

.200 -1.284

.300 -1.334

.400 -.804

.500 -.4 t I

.550 -.350

.600 -.299

.650 -.337

.700 -.337

.750 -.267

.800 -.267

.85(/ -. 190

.900 -. 144

1.000 .016

X/C CP

r/= O.64
.050 -1.181

.2(}0 -1.285

.300 -I.321

.400 -.965

.45(3 -.709

.500 -.493

.550 -.340

.600 -.249

.650 -.247

.700 -.263

.740 -.206

Lower Slllf[icc

X/C CP X/C CP

77= 0.47 7/= 0.64

.075 -. 167 .075 -.032

• 125 -.028 .125 -.034

• 175 -. 129 .225 -.505

.225 -. 182 .325 -.329

.325 -, 194 .425 -.384

.425 -.426 .525 -.552

.525 -.658 .575 -.720

.575 -.469 .675 -,286

.625 -.501 .725 -.236

.725 -. 167

.775 -.061

.825 .002

.875 . 113

.975 .211

X/C CP

r/: 0.78

.050 - 1.406

.220 -I.274

.300 -I.354

.400 -.837

.450 -.571

.500 -.391

.55O -.286

.600 -.261

.650 -.248

.700 -.341

.750 -.257

X/C CP

77= 0.78

•075 -.246

.125 -.287

.225 .344

.325 -.422

.425 -.734

.525 -.391

.575 -.351

.675 -. 173
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MINF=
HP=
PSINF=
PRI=
QBAR=
ALPilA =

X/C CP
= 0.25

.025 -.653

.120 -.887

•200 -.841

.250 -.773

,300 -.751

.400 -.741

.500 -.720

.55O -.699

.600 -.461

.65O -.354

.700 -.313

.750 -.313

•850 -.134

,900 --.078

.984 -.063

X/C CP

: 0.25

.075 .226

.125 .184

• 175 .072

.225 .045

.325 -.219

.425 -.256

.525 -.313

.575 -.370

.625 -.551

.675 -.680

.725 -.498

.775 -.376

.825 -. 190

.875 -.003

,975 -.008

lld_lc C-3

.843

4043 t

383.7

362.7

191.0

5,2

Upper surface

X/C CP X/C CP X/C CP

7/= (/.47 r/= 0.64 rj = 0.78

.040 - 1.007 .050 -I.062 .050 -1.277

.140 -I.300 .2(X) -1.189 .220 -1.158

.200 - 1.173 .3(X) -1.211 .300 -1.284

.300 -1.220 .4(X) -1.180 .400 -1.131

.400 -.829 .450 - 1.167 .450 -.983

.500 -.788 .5(X) -.775 .500 -.645

.550 -.757 .550 -.566 .550 -.562

.600 -.384 .6(X) -.362 .600 -.390

.650 -.320 .650 -.256 .650 -.218

.700 -.320 .7(X) -.217 .700 -.237

.750 -.236 .740 -. 175 .750 -. 195

.8O0 -.236

.850 -.164

,900 -. 108

1.000 .035

Lower Stllfacc

X/C CP

TI= 0.47

.075 -.253

.125 .063

.175 -.162

.225 -.204

.325 -.206

.425 -.434

.525 -.642

.575 -.687

.625 -.554

.725 -.183

.775 -.090

,825 -.008

.875 . I O6

.975 .197

X/C CP X/C CP

r/= 0.64 r/= 0.78

.075 -.063 .075 -.303

• 125 -.038 .125 -.477

.225 -.494 .225 -.376

.325 -.922 .325 -.422

.425 -.380 .425 -.731

.525 -.553 .525 -.313

.575 -.726 .575 -.296

.675 -.286 .675 -.160

.725 -.237
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APPENDIX D

SURFACE I_'I/I_SSUI_E COEFFICIENTS, i:'YLONS OFF, lip _ 20,000 FT

M c_, dog

1 .486

2 .495

3 .500

4 .()42

5 .647

6 .651

7 .725

8 .742

9 .750

10 .767

11 .799

t2 .799

13 .800

14 .801

15 .820

16 .845

17 .848

18 .851

19 .866

20 .866

21 .876

7.4

8.1

7.6

4.3

4.7

4.3

5.0

3.3

2.6

2.7

2.4

2.7

1.9

4.8

5.2

1.9

2.0

1.0

1.6

1.7

1.4
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Table D- I

MINF=

HP=

PSINF =

PRI =

QBAR =
ALPIIA =

.485

18919

1017.3

1003.3

167.8

7.4

X/C CP

r/= o.25
.025 -1._85

•120 -.724

.200 - .624

.25O - .545

.300 -.526

.400 -.428

.5O0 -.371

.550 -.356
-).-).6OO -.3_-

.65O -.210

.700 - .098

.750 - .098

.850 -. 131

.900 - .079

.984 - .042

Upper surface

X/C CP

,l?= 0.25
.075 .239

•125 .221

•175 .140

.225 .082

.325 -.007

.425 -.165

.525 -.32(}

.575 -.325

.{}25 -.392

.675 -.098

.725 -.241

.775 - .096

.825 .001

•875 . I I0

.975 .029

X/C C P

77= 0.47
.040 --I.277

•140 --.77 I

.200 --.722

.300 -- .._84"

.400 - .5(}6

.500 -..454

.55(} .412

.600 ., 87

.650 -.363

.700 -.363

.750 -.269

.800 -.269

.8_0 -.215

.900 -.098
1.000 .014

X/C CP

= 0.64
.050 -1.2t5

.200 -.679

.300 -.695

.400 -.472

.450 -.427

.500 -.434

.550 -.422

.6OO -.357

.650 -.360

.700 -.401

.740 -.327

Li)WCI SI.I 1" f_.ICC

X/C CP

77= 0.47
.075 .167

.125 .143

•175 -.016
")9".,.,._ --.081

.325 -.O68

.4_5 -. 192

.525 -.221

.575 - .27()

.625 -.274

.725 -.098

.775 -.020
},-)..8,-,_ .Ill

.87._ .205

.975 .147

X/C CP

77= O.(}4
.O75 .155

•125 .098

.225 -.068

.325 -.125

.425 -. 15O

.525 -.207

.575 -.2(}3

.675 -. 142

.725 -. I01

X/C CP

7)= 0.78
.050 -1.266

.220 -•597

,300 -,636

.400 -.490

.450 -.433

.5OO -.393

.55O -.410

.60(} -.400

.65(} -.370

.700 -.494

.750 -.381

X/C CP

rl = 0.78
.075 .140

•125 .011

.225 -.084

.325 -.111

.425 -, 185

•525 -.186

.575 -.168

.675 -.053

84

-1



MINF =

HP=

PSINF --

PRI --

QBAR =

ALPI IA =

.495

20132

967.1

952.3

166.1

8.1

X/C CP

n = O.25

.025 -I.321

.120 -.769

.200 -.655

.250 -.587

.300 -.543

.400 - .459

.500 -.388

.550 -.327

.600 -.331

.650 -.268

.700 -.205

.75O -.239

.850 -. 125

.900 - .062

.984 -.032

31lblc D-2

X/C CP

= O.25

.075 .259

.125 .251

.175 .149

.225 .108

.325 .005

.425 -.184

.525 --.383

.575 -.385

.625 -.452

.675 -.299

.725 -.332

.775 -.144

.825 .- .O38

.875 .066

.975 .038

Upper sur fuce

X/C CP

= O.47
.040 - 1.404

• 140 -.806

.200 -.746

.300 -.617

.400 -.52 l

.500 -.444

.55O .413

.600 -.391

.650 -.350

.700 -.350

.750 -.245

.800 -.245

.85O -. 186

.900 -. 158

I.(X)0 .004

X/C CP X/C CP

r/= 0.64 r/= 0.78
.050 -I.334 .050 --1.409

.200 -.721 .220 -.638

.300 -.734 .300 -.680

.400 -.506 .400 -.510

,450 -.454 .450 -.440

,500 -.471 .500 -.423

.550 -.427 .550 -.419

.600 -.366 .600 -.408

,650 -.375 .650 -.386

.700 -.404 .700 -.506

.740 -.328 .75(] -.400

kowcl- Sulfacc

X/C CP

: O.47

.075 .215

.125 .169

.175 .(X)8

.225 -.036

.325 -.O66

.425 -.198

.525 -.229

.575 -.281

.625 -.294

.725 - .306

.775 -.034

.825 .104

.875 .208

.975 .169

X/C CP X/C CP

= 0.64 g = (/.78

,075 .175 .075 .167

.125 .112 .125 .064

.225 -.057 .225 -.072

.325 -.123 .325 -.083

.425 -.134 .425 -.175

.525 -.200 .525 -.172

.575 -.267 .575 -.167

.675 -.141 .675 -.067

.725 -.099

5



Table D-3

M1NF=

HP=

PSINF=

PRI =

QBAR =
ALPHA =

.500

19970

973.7

958.9

170.6

7.6

X/C CP

r/= O.25
.025 -1.312

•120 -.74 t

.200 -.648

.250 -.572

.300 -.530

.4OO -•458

.50O -.383

.550 - .337

.600 -•336

.650 -.219

.700 -. 102

.750 -. 102

.850 -. 150

.900 - .080

.984 - .035

Upper surfacc

X/C CP

_] = 0.25
.075 .239

•125 .22O

.175 .133

.225 .087

.325 -.004

.425 -. 163

.525 -.337

.575 -.318

.625 -.385

.675 -. 102

.725 -.247

.775 -.098

.825 .001

•875 .100

.975 .031

X/C CP X/C CP

r/= 0.47 7/= 0.64
.(NO -I.315 .050 -I.257

• 140 -.778 .200 -.687

.200 -.736 .300 -.727

.300 -.599 .400 - .496

.400 -.529 .450 -.438

.500 -.467 .500 -.449

.550 -.426 .550 -.408

.600 -.394 .600 -.364

.650 -.351 .650 -.394

.700 -.351 .700 -.391

•750 -.283 .740 -.330

.800 -.283

.850 -.2t7

.900 -. t02

1.000 .000

[.owcf S,tlll'ttCe

X/C CP X/C CP

r/: 0.47 77: 0.64
.075 . 175 .075 .151

.125 .151 .125 .089

• 175 -.005 .225 -.088

.225 -.035 .325 -. 137

.325 -.088 .425 -.142

•425 -.186 .525 -.213

.525 -.253 .575 -.285

•575 -.281 .675 -.154
.625 -.277 .725 -.092
.725 -. 102

.775 -.024
•825 .082

.875 .197
•975 .127

X/C CP

77= 0.78
.050 --1.320

.220 --.610

.300 --.654

.400 --.515

.450 --.429

.500 -.408

.550 -.434

.600 -.371

.650 -.394

.700 -.510

.75O -.392

X/C CP

77= O.78
.075 .124

•125 .033

.225 -.067

.325 -.085

.425 -.187

.525 -.193

.575 -.187

.675 -.067
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M1NF =
tiP=

PSINF =
PRI =

QBAR =
ALPI tA =

•642

20024

971.5

945.5

280,4

4.3

Tut+Ic I)-4

Upper surface
X/C CP X/C CP

r/= 0.25 7/= 0,47
.025 -1.013 .040 -.881

•120 -.593 ,140 -.593

.200 -.523 ,200 -.597

.250 -.471 .300 -.504

.300 -.436 .400 -.446

.400 -.401 .500 .400

.500 -.346 ,550 -.374

.550 -.307 .600 -.356

.600 -.310 .650 -,327

.650 -.215 .700 -.327

.700 -.120 .750 -.268

.750 -.120 .800 -.268

.850 --.151 .850 -.193

.900 -,086 .900 -.120

.984 -.035 1.000 .036

X/C CP

T/= O.25
.075 .151

.125 ,147

•175 .046

.225 -.002

.325 -.094

.425 -.226

.525 -.355

.575 -.359

.625 -.413

.675 -. 120

.725 -.260

.775 -. 138

.825 -,034

.875 .069

.975 .032

X/C CP

•r/= 0.64
.050 -.816

.200 -.53(I

.300 -.617

.400 -.401

.45O -.374

.500 -.403

.550 -.364

.600 -.333

.650 -.338

.7O0 -.365

.740 -.295

Lower _ I.Il"I',UCO

X/C CP

7/= 0.47
.075 -.029

•125 -.019

.t75 -.171

.225 -.197

.325 -.204

.425 -.321

.525 -.330

.575 .370

.625 -.381

.725 -.120

.775 - .054

.825 .085

.875 .188

.975 .169

X/C CP

•r/= 0.64
,075 -, 105

•125 -.096

.225 -.249

.325 -.268

.425 -.261

.525 -.319

.575 -.376

.675 -.213

.725 -.150

X/C CP

77= 0.78
.050 -.81l

.220 -.462

.300 -.557

.400 - .408

.45O -.358

.500 ---,351

,550 -.359

.600 --.327

.650 -.315

.700 -.457

.750 -.356

X/C CP

T/= O.78
.075 -. 146

.125 -. 194

.225 -,252

.325 -.239

.425 - .306

.525 -.284

.575 .267

.675 . 125
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g

TuNe D-5

MINF =

t IP=

PSINF --

PRI =

QBAR =
ALP11A =

.647
20225

963.4

930.3
282,3

4.7

X/C CP

71= 0.25
.025 -I.020

•120 -.026
,200 -•545

,250 -.501
.300 -.461

.400 -.414

.500 -.368
.550 -.322
.600 -.324
.650 -.277

•700 -.231

,750 -.277

.850 -. 149

.900 -.085

.984 -.045

UPl_cr surface
X/C CP

= 0.47
.040 -1,069
•t40 -.623

.2O0 -.621
.300 -.532

.400 -.458

.500 -.412

.550 -.380

.600 -.368

.650 -.333
.7OO -.333
.750 -.249
.8O0 -.249

.850 -, 187

.900 -. 164

1.000 .020

X/C CP

r/= 0.64
.050 .884

.200 - .564

.300 --.646

.40O -,432

.450 -.391

.500 -.425

.550 -.382

.600 -.336

.650 -.349

,700 -.377

.740 -.304

X/C CP

r/= 025
.075 .15(1

.125 •139

•175 .047

.225 -.O09

.325 . [I4

.425 -.278

,525 -.442

.575 -.455

.625 -.500

.675 --.326

.725 -.360

.775 -.222

.8 _.._ -. 104

.875 .014

.975 .030

[.owcr SLII[;ICC

X/C CP

77= 0.47
.O75 -.023

•125 -.024

.175 -.181

.225 -.225

.325 -.219

.425 -.342

.525 -.362

.575 -.404

.625 -.418

.725 -.367
.775 -.077

.825 .(165

.875 .170

.975 .179

X/C CP

r/= (/.64
.075 -.115

•125 -.107

.225 -.261

.325 -.289

.425 -.275

.525 -.341

.575 -.407

.675 -.231

.725 -.167

X/C CP

: 0.78
.O50 -.882

.220 -.487

.300 -.589

.400 -.430

.450 -.372

.5(X] -.373

.550 -.370

.6(X) -.346

.650 -.338

.7(g) -.469

.750 -.364

X/C CP

= 0.78

.075 --.143

.125 -.197

.225 -.265

.325 -.258

.425 -.322

.525 -.298

.575 -.287

.675 -.139

v

IIF

{
,/

IE

m

=
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MINF=

HP=

PSI NF =

PRI =

QBAP, =

ALPt tA =

.651

20134

967.0

936.1

286.7

4.3

X/C CP

77 : 0•25

.025 -1.014

• 120 -.610

' 2{)() 1.536

.250 1,506

.300 -.452

.400 -.418

.500 -.360

.550 -,32 I

.600 -.322

.650 -.229

.700 -. 136

.750 -. 136

.850 -. 176

.900 -. 107

.984 -.060

X/C CP

= O.25

.075 .137

.125 .126

• 175 .033

•225 -.024

.325 -. 109

.425 -.247

.525 -.375

.575 -.377

.625 -.415

.675 -. 136

.725 -.263

.775 -. 155

•825 -.050

•875 ,055

.975 .017

TuNe D-6

kipper surface

X/C CP

= 0,47

.040 -.982

• 140 -.615

.200 -.626

.300 -.526

.400 -.450

.500 -.404

.550 -.401

.600 -.353

.650 -.350

.700 -,350

.750 -,277

.800 -.277

.850 -.215

.900 -.136

1.00(} .009

X/C CP

_7= 0.64
.050 -.835

.2OO -.54 I

.300 -•634

.400 -.405

.450 -.390

.500 -.426

,550 -.376

.600 -.335

.650 -.357

.700 -.388

.740 -.308

Lower s,l.li fu co

X/C CP

: O.47

.075 -.044

.125 -.046

.175 -.193

.225 -.224

.325 -.219

.425 -.343

.525 -.351

.575 -.395

.625 -.395

.725 -.136

.775 -,070

.825 .072

.875 .102

.975 .146

X/C CP

r/: 0.64

.075 -.116

.125 -.117

.225 -.256

.325 -.279

.425 -.275

•525 -.339

.575 -.404

.675 -.224

.725 -.164

X/C CP

r/= 0.78

.050 -.846

.220 -.477

.3OO -.582

.4OO .437

.45O -.373

.5O0 -.362

.550 -,387

.600 -,352

.650 -.327

.7OO -.483

.750 ---.406

X/C CP

r/= 0,78

.075 -.159

.125 -.212

.225 -.264

.325 -,244

.425 -.316

.525 -.284

.575 -.288

.675 .145
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Table D-7

MINF =

HP=

PSINF =

PRI =

QBAR =
ALPHA =

X/C CP

r_= 0.25
.025 -.858

.120 -.674

.200 -.574

.250 -.539

.300 -.484

.400 -.453

.500 -.382

.550 -.351

.600 -.342

.650 -.242

.700 -.141

.750 -.141

.850 -.167

.900 -.097

.984 -.052

X/C CP

= 0.25
.075 .175

.125 .157

•175 .075

.225 .023

.325 -.086

.425 -.247

.525 -.399

.575 -.411

.625 -.470

.675 -.141

.725 -.313

.775 -.187

.825 -.074

.875 .040

.975 .015

.725

19748

982.8

944.2

361.7

5.0

Upper surface
X/C CP

= 0.47
.040 -I.387

•140 -.781

.200 -•637

.300 -.557

•400 -.501

.500 -.448

.550 -.412

.600 -.386

.650 -.354

.700 -.354

.750 -•282

.800 -•282

.850 -.204

•900 -. 141

1.000 .026

X/C

r/
.050

.200

.300

.400

.450

.500

.550

.600

.650

.700

.740

CP

= 0.64

- 1.252

-.601

-.710

-.460

- .420

-.461

- .405

-.363

-.365

-.392

-.327

Lower surface

X/C CP

= 0.47
.O75 -.015

.125 -.013

.175 -.183

.225 -.215

.325 -.212

.425 -.343

.525 -.364

.575 -.420

.625 -.439

.725 -.141

.775 -.069

.825 .063

.875 .159

.975 .157

X/C

7/
.075

.125

.225

.325

.425

.525

.575

.675

.725

CP

= 0.64

-.092

-.089

-.254

-.295

-.276

-.357

-.438

-.244

-.167

X/C CP

rl = 0•78
.050 -.841

.220 -.533

.3(X) -.632

.400 -.487

.450 -.409

.500 -.402

.550 -.392

.600 -.362

.650 -.354

.700 -.514

.750 -.391

X/C CP

r/= 0.78
.075 -.126

.125 -.211

.225 -.265

.325 -.270

.425 -.334

.525 -.317

.575 -.314

.675 -.149
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MINF=

ttP=

PSI NF =

PRI =

QBAR =
ALPttA =

.742

20379

957. I

906.9

369. I

3.3

l_tblc D-8

Upper surface

X/C CP X/C CP

r/= 0.25 rl = 0.47

.025 -.792 .040 1.128

.120 -.588 .140 -,561

.200 -•527 .200 -,607

.250 -.492 .300 -.516

.300 -.456 .400 -.452

.400 -.421 .500 -.418

.500 -.375 .550 -.389

.550 -.328 .600 --.367

.600 -.328 .650 -.344

.650 -.286 .700 -.344

.700 -.244 .750 -.259

.750 -.299 .800 -.259

.850 -.161 .850 -.199

.900 -.096 .900 -.170

.984 -.048 1.000 .040

X/C CP

7] : 0.25

.075 .1O0

• 125 .092

• 175 .004

.225 -.O54

.325 -.168

.425 -,321

.525 -.472

.575 -.557

.625 -.521

.675 -.347

.725 -.468

.775 .264

.825 -.158

.875 -.053

.975 -.012

X/C CP

= 0.64

.050 -.661

.200 -.532

.300 -.659

.400 -.421

.450 -.384

,500 -.427

.550 -.383

.600 -.340

.65O -.351

.700 -.391

.740 -.300

l .owcF SUI{_ICC

X/C CP

r_ : 0.47
.075 -. 135

•125 -.107

.175 --.272

.225 -.311

.325 -.294

.425 -.439

.525 -.44 I

.575 -.497

.625 -.507

.725 -.377

.775 -.096

,825 .029

.875 .130

.975 .109

X/C CP

: 0.64

.075 -.253

.125 -.213

.225 -.37t

.325 .392

.425 -.355

.525 -.438

.575 -.520

.675 -.280

.725 -.194

X/C CP

r/: 0.78

.050 -.683

.220 -.458

.300 --.582

.4OO -.423

.450 -.365

.500 -.37 I

.550 -.372

.6OO -.345

.65O -.331

.700 -.490

.750 - .370

X/C CP

= 0.78

.075 -.298

.125 .340

.225 -.378

.325 .353

.425 -.415

.525 -.376

.575 -.370

.675 -.185

0..-7---
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MINI==
HP=
PSINF=
PRI=
QBAR=
ALPHA=

.750
20339

958.7
914.0
378.0

2.6

X/C CP
= 0.25

.025 -.759
•120 -•533
.2(X) -.508
.250 -,472
.3(X) -.458
.4(X) -.431
.5(X) -.370
.550 -.338
.60O -.328

.650 -.241

.700 - ,155

•750 -.155

.850 -.196

.9(X) -.132

.984 -.053

X/C CP

= O.25

.075 .046

• 125 .063

• 175 -.036

.225 -,089

.325 -.177

.425 -,312

.525 -.406

.575 -.407

.625 -.445

,675 -.155

.725 --.302

.775 -.194

.825 --.113

.875 -.036

.975 .037

_lliblc D-9

Upper sur face

X/C CP

77= 0.47

.040 -.995

,140 -.535

.200 -.583

,300 -,506

.400 -.442

.500 -.429

.550 - .398

.600 -.302

.650 -.348

.700 -.348

.750 -.322

.800 -.322

.850 -.235

.900 -.155

1.000 .027

X/C CP

= 0.64

.050 -.596

.200 -,487

.300 -.639

.400 -.41 I

.450 -.373

.500 -.414

.550 -.389

.600 -.344

.650 -.360

.700 -.409

.740 -.320

Lower surface

X/C CP

77: 0.47

.075 -.183

• 125 -.139

• 175 -.308

.225 -,328

.325 -.317

.425 -.437

.525 -.431

.575 -.475

.625 -.479

.725 -.155

.775 -.098

.825 .CX)6

.875 .()81

.975 .145

X/C CP

77= 0.64

.075 -.305

•125 -.250

.225 -.412

.325 -.407

.425 -.370

.525 -.450

.575 -,529

.675 -.275

.725 -.181

X/C CP

77= 0.78

.050 -.577

.220 -.428

.300 -,562

.400 -.408

.450 -.349

.500 -.355

.550 -.372

.600 -.345

.65(1 -•335

.700 -.511

.750 -.411

XIC CP

: 0,78

.075 -.376

.125 .395

.225 -.432

.325 -.384

.425 -.431

.525 -.387

.575 --.379

.675 -.171

92
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Tublc D- 10

MINF=

tIP=

PSINF =

PRI =

QBAR =

ALPHA =

.760

20409

950.0

903.2

390.4

2.7

Upper surface

X/C CP X/C CP

r/= 0.25 r/= 0.47
.025 -.657 .040 -.909

• 120 -.595 .140 -.694

.200 -.554 ,200 -.607

.250 -.517 .300 -.520

.300 -.488 .400 -.502

.400 -,472 .500 -,486

.500 - .430 .550 -,457

.550 -.391 .000 --.442

.600 -.382 .050 -.418

.650 .310 .700 .418

.700 1.002 .750 -.367

.750 -.177 .800 -.367

.850 -.212 .850 -.246

.900 -.153 .900 -.177

.984 -.065 1.000 .022

Lowcf SUl'ft|cc

X/C CP

= O.64

.050 -,637

.200 -.566

.300 -.773

.400 -.467

.450 -,428

.500 -,490

,550 -,444

.600 -.428

.650 -.419

.700 - .469

.740 -.388

XIC CP X/C CP

r/= 0,25 r/= 0.47

.075 .057 .075 -.189

.125 .C)61 .125 -.142

.175 .048 .175 -.322

.225 -.081 ,225 -.350

.325 -.178 .325 -.320

.425 -.353 .425 -.488

.525 -.460 .525 -.512

.575 -.449 ,575 -.518

•625 -.487 .025 -.547

.675 -,177 .725 -.177

.725 -.346 .775 -.120

.775 -.275 .825 - ,031

.825 --.103 .875 .049

.875 -.052 .975 .102

.975 -.066

X/C CP

*7= 0.64
.075 -.310

• 125 -.25 I

,225 -.441

.325 -.501

.425 -.440

.525 -.524

.575 -.609

.675 -.308

.725 -.2O7

X/C CP

r7 : o.78

.o5o - .732

.220 - .498

.300 -.737

.400 -.469

.450 -.419

.500 .423

.550 - .432

.600 - .407

.650 ,378

.700 ,578

.750 - .449

X/C CP

r7 : O.78
.075 .396

• 125 -.442

225 - .498

.325 - .467

.425 - .495

.525 .-.470

,575 - .494

.675 -. 190
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Table D- I 1

94

MINF=

H P=

PSINF =

PRI =

QBAR =
ALPIfA =

.799

20403

956.2

892.6

427.6

2.4

X/C CP

77= 0.25
,025 -.606

• 120 -.566

.200 -.536

.250 -.507

.300 -.467

.400 -.444

.500 -.397

.550 -.362

.600 -.346

.650 -.359

.700 -,310

.750 -.366

.850 -, 198

.900 -.131

.984 -.058

Upper surface

X/C CP

77 : 0.25

.075 .067

• 125 .051

• 175 -.030

.225 -.094

.325 -.184

.425 -.409

.525 -.451

.575 -.524

.625 -.647

.675 -.442

.725 -.383

.775 -.314

.825 -.209

,875 -.103

.975 -.073

X/C CP

r/= 0.47

.040 -I.011

• 140 -.499

.200 -.574

.300 -.515

.400 -.456

.500 -.439

.550 -.412

.600 -.392

.650 -.373

.7OO -.373

.750 -.318

.800 -,318

.850 -.219

.900 -. 173

1,000 .048

X/C CP

77= 0.64

.050 -.725

.200 -.504

.30O -.889

.400 -.432

.450 -.393

.500 -.45 I

.550 -.406

.600 -.362

.650 -.366

.700 -.418

.740 -.300

L.owcr su l[_lCC

X/C CP

r/= 0.47

.075 - .204

.125 -.159

.175 -.329

.225 -.367

.325 -.336

.425 -.53 I

.525 -.509

.575 -.547

.625 -.657

.725 -.224

•775 -. 101

.825 -,002

.875 .082

.975 .181

X/C CP

77= 0.64

.O75 -.341

.125 -.287

.225 -.472

.325 -.475

.425 -.41 I

.525 -.593

.575 -.775

.675 -.309

.725 -.2t8

X/C CP

77= 0.78

.050 -.803

.220 -.453

.300 -.588

.400 -.438

.450 -.373

.500 -.381

,550 -.381

.60O -.348

.650 -.330

.700 -.518

.750 -.357

X/C CP

77 = O.78

.O75 -.411

• 125 -.468

.225 - .496

.325 -.426

.425 -.552

,525 .441

.575 .455

.675 -.213
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MINF=

HP=
PS1NF =

PRI =

QBAR =
ALPHA =

X/C CP

r/= 0.25
.025 -•629

•120 -.605

.200 -.551

.250 -.500

.300 -.471

.400 -.441

.5(X) -.394

.55O -.351

.600 -.345

,650 -.311

.700 -.277

.75O -.337

.850 -.187

.900 -.121

.984 -.045

X/C CP

: O.25
.075 .085

•125 .078

.175 -.011

.225 -.073

.325 -.162

.425 -.394

.525 - .464

.575 -,520

.625 -.646

.675 -.335

.725 -.476

.775 -.291

.825 -.202

.875 -.113

.975 -.083

Tuble D- 12

.799

20477

953.2

890.4

425.8

2.7

LIppcr _;Ul fac_2

X/C CP

: 0.47
.040 -.929

.140 -.637

,200 -.553

.3OO -.515

.400 -.461

.500 -.438

.550 -.409

.600 -.388

,650 -.361

,700 -.361

,750 -.284

.800 -.284

.850 -.205

,900 -.168

1,000 .047

X/C CP

= 0.64
.050 -.905

.200 -.557

.300 -.893

.400 -.435

.45O -.391

.500 -.446

.550 -.403

.600 -.356

.650 -.368

.700 -.417

.740 -.306

[+0 W_?l St.ll fl.ICt?

X/C' CP

rl = 0.47
.075 -. 189
.125 -.147
.175 -.316

.225 -.356

.325 -.328

.425 -.520

.525 -.504

.575 -.548

.625 -.672

.725 -.349

.775 -.I 12

.825 -.013

.875 .070

.975 .163

X/C CP

T/= 0.64
.075 -.318

.125 -.266

.225 -.459

.325 -,470

.425 -.402

,525 -.579

.575 -.756

,675 -.301

,725 -.206

X/C CP

= O.78
.050 -,873

.220 -.483

.300 -.610

.400 -.445

.450 -.375

.500 -.385

.550 -.388

.600 -.355

.650 -.338

.700 -,541

.750 -.381

X/C CP

: 0.78
.O75 -.390

.125 -.449

.225 -.482

.325 -,418

.425 -.542

.525 -.431

.575 -.441

.675 -.198
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TableD-13

96

MINF=
liP=
PSINF=
PRI=
QBAR=
ALPHA=

.801
20433

955.O
902.2
428.3

1.9

X/C CP
= O.25

.025 -.593
•120 -.538
.2(X) -.514
.250 -.475
.3{X) -.454
.400 -.439
.500 -.391
.550 -.345
.600 .349
.650 -.256
.7(X) -.163
.750 -.163
.8._0 -.222
.900 -.162
.984 -.052

Uppersurface

X/C CP

77= 0,25
.075 .O3(}

• 125 .044

•175 --.058

.225 --.096

.325 --.190

.425 --.333

•525 - .415

.575 -.429

.(}25 -.455

•(}75 -.163
.-)-.7_._ -.304

.775 -.222
},-)-.8-) -.159

.87__ -.097

.975 -.077

X/C CP

= 0.47
.040 -.828

• t40 -•445

.200 -.601

.300 -.509

.400 -•4(;6

.500 -.444

.55O -.416

.600 .371

.650 -.364

.700 -. 364

.750 -.334

.800 -.334

.850 -.246

.900 -. 163

1.000 .039

X/C CP

= 0.64
.050 -.483

.200 -.517

.300 - .846

.400 .423

.450 -389

.500 - .445

.550 -.403

.600 -.350

.650 - .372

.700 -.44 1

.740 -.340

Lower surface

X/C CP

_7= 0.47
.075 -.236

.125 .173

.175 -.337

.225 -.370

.325 -.338

.425 -.506

.525 .475

.575 -.53(}

.625 -.516

.725 -.163

.775 -. 112

.825 ......

•875 .044

.975 . I01

X/C CP

r; = 0.64

.O75 -.366

• 125 -.305

.225 -.498

.325 - .473

.425 -.406

525 -.580

.575 -.755

.675 -.301

.725 -.187

X/C CP

= 0.78
.050 -.462

.220 -.425

.300 -.567

.400 -.430

.450 -.369

.500 -.395

.55O -.383

.600 -.352

.650 -.339

.700 .569

.750 -.419

X/C CP

: 0,78
.075 -.448

• 125 -.497

•225 -.522

.325 -.438

.425 -.546

.525 -.431

.575 --.428

.675 -.198
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Table D- 14

MINF=

HP=

PSINF=

PRI =

QBAR =

ALPIIA =

X/C CP

: 0.25

.025 -.673

.120 -.890

.200 -.735

.250 -.662

.300 -.580

.400 - .462

.500 -.398

.550 -.354

•600 -.340

.650 -.244

.700 -.148

.750 -.148

.850 -. 163

.900 -.087

.984 -.042

•80 I

21039

930.9

885.5

418.3

4.8

Upper sur f:lcc

X/C CP X/C CP X/C CP

: 0.47 rl : 0.64 r/: 0.78
.040 -1.115 .050 -I.186 .050 -I.315

.140 -1.314 .2(X) -1.221 .220 -1.011

.200 -1.176 .3(X) -.676 .300 -.508

.300 -.522 .400 -.351 .400 -.374

.400 -.422 .450 -.357 .450 .361

.500 -.418 .500 .4 I0 .500 -.381

.550 -.394 .550 -.385 .550 -.388

.600 -.374 .600 -.346 .600 -.35 l

.650 -.357 .650 -.348 .650 -.341

.700 -.357 .7(X) -.392 .700 -.541

.750 -.283 .740 -.31 I .750 -.389

.800 -.283

.850 -. 199

.900 -. 148

1.000 .058

X/C CP

= 0.25

.075 .187

.125 .181

.175 .093

.225 .045

.325 -.077

.425 -.255

.525 -.408

.575 -.495

.625 -.489

.675 -. 148

.725 -.361

.775 -.226

.825 -.115

.875 -.005

.975 -.013

l.owcr surface

X/C CP

= 0.47

.O75 -.02 I

.125 -.007

.175 -.176

.225 -.225

.325 -.225

.425 -.387

.525 -.406

.575 - .477

.625 - .506

.725 -.148

.775 -.07 I

.825 .043

.875 .132

.975 .179

X/C CP

r/= 0.64

.075 -. 102

.125 -.112

.225 -.287

.325 -.331

.425 -.309

.525 -.436

.575 -.563

.675 -.255

.725 -. 166

X/C CP

r/ : 0.78

.075 -.146

.125 -.233

.225 -.299

.325 -.298

.425 -.401

.525 -.352

.575 -.364

.675 -.147
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MINF=

HP=
PSINF=

PRI =

QBAR =
ALPHA =

X/C CP

= 0.25
.O25 -,685

•120 -.892

.20O -.824

.250 -.742

.300 -.704

.400 148

.500 -.433

.550 -•342

.6O0 -.332

.65O -.240

.700 -. 148

.750 -. 148

.850 -.161

.900 -.095

.984 -.050

X/C CP

= O.25
.075 .185

.125 .186

.175 .[01

.225 .058

.325 -.062

.425 -.245

.525 -.395

.575 -.435

.625 -.487

.675 -. 148

.725 -.342

.775 -.205

•825 -.092

.875 .015

.975 -.002

Tabtc D- 15

.82O

19372

998.4

948.4

470.2

5.2

Upper surface
X/C CP X/C CP X/C CP

= 0.47 7-/= 0.64 r/= 0.78
.040 -1,080 .050 -1.151 .050 -.148

.140 -1.163 .200 -1.156 .220 -1.113

.200 - 1.139 .300 -.768 .300 -.148

.300 -. 148 .4(X) -.638 .400 -.679

.400 -.612 .450 -.481 .450 -.421

.500 -.388 .5(X) -.401 .500 -.351

.550 -.343 .550 -.311 .550 -.316

,600 -.323 .6(X) -.273 .600 -.261

.650 -.316 .650 -.277 .650 -.280

,700 -.316 .7(X) -.324 .700 -.428

.750 -.267 .740 -,276 .750 -.329

.800 -.267

.850 -. 196

.900 -. t48

1.000 .052

LOWCFsurlacc

X/C CP

= 0.47
.075 .003

.125 .012
•175 -. 160

.225 -.21 I

.325 -.207

.425 -.388

.525 -.397

•575 -.468

.625 -.595

.725 -.148

.775 -.079

.825 .019

.875 ,112

,975 .168

X/C CP

r/= O.64
.075 -.085

•125 -.096

.225 -.272

.325 -.327

.425 -.308

.525 -.493

.575 -.678

.675 -.260

.725 -. 175

X/C CP

: 0.78
.075 -. 130

.[25 -.219

.225 -.307

.325 -.301

.425 -.449

.525 -.370

.575 -.396

.675 -. 166

98
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M1NV =

tIP=

PSI NF =

PRI =

QBAR =

ALPHA =

X/C CP

= 0.25

.025 -.456

• 120 -.647

.200 -.569

.250 -.548

.300 -.526

.400 -.507

.500 -.417

.550 -.387

.600 -.377

.650 -.386

.700 -.352

.750 -.419

,8._0 -._91 I

,900 -. 142

.984 -.052

X/C CP

r/= 0.25

.075 .067

• 125 .048

• 175 -.050

.225 -.054

.325 .304

.425 -.259

.525 -.598

.575 -.570

.625 -.552

.675 -.548

.725 -,452

.775 -.370

.825 -.249

.875 -.127

.975 -. 107

T'al}lc D- 16

•845

20625

947.3

876.8

473.4

1.9

Upper surface

X/C CP X/C CP

r/= 0.47 r/= 0.64

.040 -.790 .050 -.732

• 140 1,019 .200 -.464

.200 -.552 .300 -.885
9}.300 -.476 .400 -.5_8

.400 -.484 .450 -.443

.500 -.512 .500 -.531

.550 -.434 .550 -.426

.600 -.424 .600 -.378

.650 -.392 .650 -.379

.700 -.392 .700 -.461

.750 -.338 .740 -.325

.800 -.338

.850 -.222

.900 -. 162

1.000 .050

Low'of SUl'f_lCC

X/C CP

r/: 0.47

.075 -.238

.125 -.185

.175 -.357

.225 -.377

.325 --.314

.425 -.640

.525 -.624

.575 -.572

•625 -.636

.725 -.238

•775 -. 143

.825 -.065

.875 .010

.975 .133

X/C CP

77= 0.64

.O75 -.368

•125 -.305

,225 -.512

.325 -.617

.425 -.628

.525 -.670

.575 -.71 I

.675 -.296

.725 -.194

X/C CP

: 0.78

.050 -.841

.220 .496

.300 .-.971

.400 .433

.450 -.361

.500 -.392

.550 -.409

.600 -.357

.650 -.332

.7O0 -.611

.750 .378

X/C CP

r/= 0.78
.075 -.435

•125 -.567

.225 -- .674

.325 -.637

.425 .541

•525 .028

.575 -.527

.675 -.206
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MINF= .848
HP= 20641
PSINF= 946.7
PRI= 875.8
QBAR= 476.3
ALPHA= 2.0

TublcD-17

Uppefsurface
X/C CP X/C CP X/C CP X/C CP

77: 0.25 ?7: 0.47 r/: 0.64 77= 0.78

.025 -.466 .040 .756 .050 -.752 .050 -.892

• 120 -.658 .140 -I.028 .200 -.725 .220 -.367

.200 -.573 .200 -.574 .300 -.697 .300 - 1.000

.250 .544 .300 -.542 .400 -.499 .400 -.463

.300 -.533 .400 -.434 .450 -.414 .450 --.422

.400 -.518 .500 -.486 .500 -.524 .500 -.383

.500 -.395 .550 -.432 .550 -.447 .550 -.410

,550 -.363 .600 -.421 .600 -.382 .600 -.357

.600 -.352 .650 -.386 .650 -,376 .650 -.329

.650 -.366 .700 -.386 .700 -.462 .700 -.608

.700 -.381 .750 -.307 .740 -.330 .750 -.388

.750 -.386 .800 -.307

.850 -.207 .850 -.212

.900 -.139 .900 -.162

.984 .044 1.000 .050

Lowcf s LLI'F_LCC

X/C CP X/C CP X/C CP X/C CP

-- 0.25 77= 0.47 77= 0.64 ?7 = 0.78
.075 .084 .075 -.230 .075 -.355 .075 -.426

.125 .068 .125 -.179 .125 -.290 .125 -.547

.175 -.040 .175 -.357 ,225 -.505 .225 .667

.225 -.030 .225 -.374 .325 -.610 .325 -.621

.325 -.293 .325 -.307 .425 .614 .425 -.543

.425 -.279 .425 -.624 .525 -.673 .525 -.623

.525 -.567 .525 -.61 I .575 -,732 .575 -.602

.575 -.550 .575 -.564 .675 -.307 .675 -.196

.625 -.574 .625 -.655 .725 -.195

.675 -.454 .725 -.302

.725 -.546 .775 -.165

.775 -.372 .825 -.088

.825 -.254 .875 -.010

.875 -.135 .975 .098

.975 -. 109

100
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Tublc D- ] 8

MINF=

HP=

PSINF =

PRI =

QBAR =

ALPttA =

.851

20621

947.5

882.6

480.1

1.0

Upper surface

X/C CP X/C CP

rj = 0.25 r1= 0.47

.025 -.378 .040 -.586

.120 -.525 .140 -.525

.200 -,528 ,200 -.510

.250 -.481 .300 -.467

.300 -.450 .400 -.541

.4(X) -.465 .500 -.450

.500 -.449 .550 -.411

.550 -.383 .600 .428

.600 -.366 .650 -.381

.650 -.274 .700 -.381

.700 -.181 .750 -.3(}3

.750 -.181 .800 -.363

.850 -.232 .850 -.245

.900 -.164 .900 -.181

.984 -.065 1.000 .036

Lower gtllF;.ICg

X/C CP

= 0.64

.O5O -.368

.2OO -.496

.300 -.920

.400 -.441

.45O -.396

.500 - .454

.550 -.422

.600 -.373

.650 -.378

.700 -.479

.740 -.375

X/C CP X/C CP

r7 = 0.25 rl = 0.47

.075 -.011 .075 -.309

• 125 .020 .125 -.238

• 175 -.076 .175 -.404

.225 -.118 .225 -.405

.325 -.234 .325 -.332

.425 -.385 .425 -.637

.525 -.493 .525 -.629

.575 -.476 .575 -.555

.625 -.504 .625 -.631

.675 -.181 .725 -.181

.725 -.338 .775 --.152

.775 -.277 .825 -.080

.825 -.203 .875 -.011

.875 -. 144 .975 .{}d9

.975 -.112

X/C CP

r7 = 0.64

.O75 -.432

.125 -.358

.225 -.553

.325 -.710

.425 -.701

.525 -.713

.575 -.724

.675 -.281

.725 -.181

X/C CP

rl = 0.78

.050 -.181

.220 --.489

.300 --.868

.400 - .449

.450 -.360

.500 -.371

.550 - .409

.600 -.351

.650 - .339

.700 --.593

.750 - .496

X/C CP

{}.J,_

,075 - .5{}3

.125 .620

.225 .(}6.5

.325 - .774

.425 - •595

•525 - .567

.575 -.378

.675 -.194

I{}1



M1NF = .866

HP= 20583

PSINF = 949.0

PRI = 871.5

QBAR = 498.2

ALPHA = 1.6

Table D- 19

Upper surface
X/C CP X/C CP X/C CP X/C CP

7]= 0,25 77= 0.47 r/= 0.64 77= 0.78
.025 -.385 .040 -.607 .050 -.648 .050 -.800

•120 -.608 .140 -.943 .200 -.701 .220 -.501

.200 -.555 .200 -.545 .300 -.849 .300 -.877

.250 -.517 .300 -.551 .400 -.514 .400 -.515

.300 -.527 .400 -.526 .450 -.466 .450 -.453

.400 -.550 .500 -.582 .500 -.554 .500 -.382

.500 -.515 .550 -.462 .550 -.371 .550 -.382

.550 -.401 .600 -.367 .600 -.417 ,600 -.338

.600 -.373 .650 -.362 .650 -.380 .650 -.312

.650 -.379 .700 -.362 .700 -.476 .700 -.575

.700 -.363 .750 -.353 .740 -.368 .750 .505

.750 -.448 .800 -.353

.850 -.203 .850 -.213

.900 -.132 .900 -.138

.984 -.048 1.000 .050

Lower surface

X/C CP X/C CP X/C CP X/C CP

77= 0.25 _ = 0.47 _ = 0.64 _ = 0.78
.075 .069 .075 -.247 .075 -.381 .075 -.454

.125 .054 .125 -.196 .125 -.308 .125 -.566

.175 -.060 .175 -.391 .225 -.538 .225 -.633

.225 -.034 .225 -.387 .325 -.654 .325 -.716

.325 -.281 .325 -.304 .425 -.643 .425 -.561

.425 -.385 .425 -.600 .525 -.686 .525 -.693

.525 -.472 .525 -.625 .575 -.730 .575 -.814

.575 -.550 .575 -.539 .675 -.358 .675 -.188

.625 -.535 .625 -.697 .725 -.239

.675 -.603 .725 -.279

.725 -.478 .775 -.182

.775 -.413 .825 -.124

.825 -.272 .875 -.063

.875 -,132 .975 .071

.975 -.097
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MINF=

tiP=

PSINF =

PRI =

QBAR =

ALPHA =

.866

20765

941.7

864.3

494.7

1.7

Table D-20

Upper surface

X/C CP X/C CP

r/= 0.25 r; = 0.47
.025 -•394 .040 -.686

.120 -.616 .140 -.967

•200 -.578 .200 -.572

.250 -.508 .300 -.568

.3(X) -.532 .400 -.536

.400 -.553 .500 -.583

.500 -.525 .550 -.460

.550 -.416 .600 -.334

.600 -.328 .650 -.345

.650 -.417 .700 -.345

.70(] -.506 .750 -.316

.750 -.387 .800 -.316

.850 -.193 .850 -.207

.9(X) -.125 .900 -.146

.984 -.(L14 1.000 .(g16

Lowcl SLII'rUCC

X/C CP

= 0.64
.050 -.675

.200 -.716

.300 -.798

.400 -.547

.450 -.478

.500 -.539

.55O -.352

.600 - .377

.650 -.378

.700 -.478

.740 -.368

X/C CP X/C CP

r/= 0.25 r/= 0.47

•075 .081 .075 -.239

• 125 .069 .125 -.188

• 175 -.049 .175 -.383

.225 -.022 .225 -.384

.325 -.263 .325 -.299

.425 -.389 .425 -.595

.525 -.471 .525 -.615

.575 -.553 .575 -.536

.625 -.533 .625 -.696

.675 -.495 .725 -.265

.725 -.642 .775 -.180

.775 -.414 .825 -.148

.825 -.270 .875 -. 111

.875 -.129 .975 .(g17

.975 - .087

X/C CP

= 0.64

.075 -.373

.125 -.301

.225 -.535

.325 -.645

.425 -.643

.525 -.685

.575 -.726

.675 -.378

.725 -.241

XIC CP

r/ : 0.78

.O50 -.838

.220 -.683

.3OO -.855

.400 -.490

.450 -.339

.500 -.334

.550 - .404

.6OO -.368

.650 -.312

.700 -.571

.75O -.532

X/C CP

77: 0.78

.075 --.450

•125 -.555

.225 -.632

.325 -.708

.425 -.560

.525 - .680

.575 -.794

.675 -.181
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MINF= .876
1IP= 20688
PSINF= 944.8
PRi= 869.6
QBAR= 5O7.1
ALPHA= 1.4

TableD-21

Uppersu/htce
X/C CP X/C CP X/C CP X/C CP

r/= 0.25 r/= 0.47 r/= 0.64 r/= 0.78

.025 -.348 .040 -.620 .050 -.198 .050 -.719

• 120 -.585 .140 -.849 .200 -.198 .220 -.484

.200 -.535 .200 -.523 .300 -.850 .300 -.876

.250 -.489 .300 -.539 .400 -.550 .400 -.578

.300 -.510 .400 -.531 .450 -.493 .450 -.551

.400 -.534 .500 -.594 .500 -.600 .500 -.530

.500 -.534 .550 -.588 .550 -.539 .550 -.580

.550 -.466 .600 -.561 .600 -.564 .600 -.582

.600 -.450 .650 -.459 .650 -.593 .650 -.317

.650 -.324 .700 -.459 .700 -.485 .700 -.491

.700 -.198 .750 -.392 .740 -.319 .750 --.371

.750 -.198 .800 -.392

.850 -.241 .850 -.215

.900 -.159 .900 -.198

.984 -.050 1.000 .043

Lower surface

X/C CP X/C CP X/C CP X/C CP

rj : 0.25 r/= 0.47 r7 : 0.64 77 : 0.78

.075 .030 .075 -.258 .075 -.373 .075 -.198

.125 .060 .125 -.196 .125 -.311 .125 -.568

• 175 -.035 .175 -.387 .225 -.503 .225 -.618

.225 -.091 .225 -.373 .325 -.732 .325 -.737

.325 -.206 .325 -.317 .425 -.662 .425 -.589

.425 -.400 .425 -.614 .525 -.697 .525 -.711

.525 -.538 .525 -.652 .575 -.732 .575 -.198

•575 -.422 .575 -.579 .675 -.396 .675 -.176

.625 -.599 .625 -.706 .725 -.251

.675 -.198 .725 -.198

.725 -.404 .775 -.228

.775 -.342 .825 -.163

.825 -.270 .875 -.103

.875 -.198 .975 .039

.975 -.160 w
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APPENDIX E
SURFACE PRESSURECOEFFICIENTS, PYLONS OFF, tiP _ 30,000FT

M c_, dog
1 .630 10.5

2 .649 7.0

i 3 .650 6.3

4 .739 4.6

5 .747 5.0

6 .752 6.1

7 .793 7. I

8 .800 3.7

9 .800 4.0

10 .841 5.2

I1 .845 3.1

12 .847 3.3

13 .873 2.7

14 .873 2.7

15 .875 4.O
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Tublc E-I

MINF=

H P=

PSINF =

PRI =

QBAR =

ALPtIA =

.630

30032

627.5

615.0

174.3

10.5

X/C CP

7/: O.25

.025 -1.436

• 120 -.954

.200 -.789

.250 -.754

.300 - .660

.4O0 -.597

.500 -.521

.550 -.464

.600 -.416

.650 -.382

.700 -.348

.750 -.318

.850 -. 195

.900 -. 135

.984 -.058

Upl)cr surface

X/C CP

r/= 0.47

.040 -1.659

• 140 -1.306

.200 -I.053

.300 -.888

.400 -.677

.500 -.525

.550 -.469

.600 -.438

.650 -.388

.700 -.388

.750 -.258

.800 -.258

.850 -.206

.900 -. 175

I.(X)O -. 123

X/C CP

= 0.64

.050 -2.471

.200 -.973

.300 -.812

.400 -.560

.450 -.507

.500 -.487

.550 -,439

.600 -.368

.650 -.357

.700 -.348

.740 -.282

X/C CP

= 0.25

•075 ,273

.125 .257

.175 .191

,225 .128

.325 .014

.425 -. 156

.525 -.363

.575 -.397

.625 -.472

.675 -.392

.725 -.341

.775 -.210

.825 -.082

.875 .046

.975 .003

Lower Stll_[icc

X/C CP X/C CP

r/= 0.47 r/= 0.64

.075 .307 .075 .269

.125 .253 .125 .197

• 175 .099 .225 -.00 I

.225 .037 .325 -.079

•325 -.(X)2 .425 -. I 15

.425 -. 160 .525 -.204

.525 -.223 .575 -.294

•575 -.289 .675 -. 182

.625 -.325 .725 -. 140

.725 -.329

.775 -.052

.825 .086

.875 .189

.975 .115

X/C CP

r/= 0.78

.050 -2.230

.22O -.883

.300 -.757

.4(X) -.574

.450 -.497

.500 -.466

.550 -.443

.600 - .4 13

.650 -.378

.700 -.394

.750 -.322

X/C CP

7/= 0.78

.075 .252

' 125 •133

.225 -.018

.325 -.065

.425 -. 174

.525 -.197

.575 -.208

.675 -.110

m

=.

IO6
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Tublc E-2

M1NF = .649

H P= 30291

PSINF = 620.2

PRI = 603.9

QBAR = 183.0

ALPIIA = 7.0

Upper surface

X/C CP X/C CP X/C

r/: 0.25 r/: 0.47

.025 -1.083 .040 -I.892

.120 -.752 .140 -.894

.200 -.641 .200 -.723

.250 -.579 .300 -.632

.300 -.529 .400 -.517

.400 -.472 .500 -.448

.500 -.414 .550 -.411

.550 -.369 .600 -.396

.600 -.372 .650 -.356

.650 -.336 .700 -.356

.700 -.263 .750 -.252

.750 -.286 .800 -.252

.850 -.141 .850 -.176

.900 -.063 .900 -. 126

.984 -.038 1.000 .003

CP X/C CP

r/= 0.64 r/= 0.78

.050 -1.958 .050 -2.003

.200 -.705 .220 -.627

.300 -.738 .300 -.673

.400 -.499 .4(X) -.508

.450 -.453 .450 -.435

.500 -.467 .500 -.420

.550 -.423 .550 -.411

.600 -.359 .600 -.391

.650 -.374 .650 -.372

.700 -.392 .7(X) -.492

.740 -.316 .750 -.384

Lowcl- s l.ll[[|cc

X/C CP X/C CP X/C CP

r/= 0.25 r/= 0.47 r/= 0.64
.075 .246 .075 . 135 .075 .081

.125 .246 .125 .102 .125 .041

.175 .154 .175 -.049 .225 -.135

.225 .102 .225 -.103 .325 -.183

.325 -.012 .325 -. 120 .425 -. 191

.425 -.204 .425 -.254 .525 -.266

.525 -.413 .525 -,298 .575 -.341

.575 -.426 .575 -.344 .675 -. 193

.625 -.496 .625 -.370 .725 -. 136

.675 -.438 .725 -. 170

.725 -.346 .775 -.040

.775 -. 181 .825 .093

.825 -.057 .875 . 197

.875 .067 .975 . 182

.975 .046

X/C C P

: O.78

.075 .069

• 125 -.029

.225 -.140

.325 -. 155

.425 -.238

.525 -.237

.575 -,235

.675 -.106
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Tablc E-3

MINF=

HP=

PSINF =

PRI =

QBAR =
ALPHA =

X/C CP

r/= 0.25
•025 -1.086

•120 -.711

.200 -.614

.250 -.588

•300 -.503

.4O0 - .468

.500 - .407

•550 - .377

•600 -.344

•650 -.304

.700 -.264

•75(1 -.291

.85(1 -. 158

.900 - .092

.984 -.055

X/C CP

7/= 0.25
.075 .199

.125 .173

•175 .096

.225 .034

.325 -.082

.425 -.241

.525 -.414

.575 -.447

.625 -.475

.675 -.379

.725 -.380

.775 -.217

.825 -.089

.875 .034

.975 .025

.649

30183

623.2

605.0

184.2

6.3

Upper surface
X/C CP X/C CP

r/= 0.47 r/= 0.64
.(M0 -1.835 .050 -I.305

.140 -.747 .200 -.668

.200 -.696 .300 -.719

.300 -.587 .400 - .482

.400 -.499 .450 -.430

.500 -.436 .500 - .449

.550 -.407 .550 - .4 15

.600 -.383 .600 -.350

,650 -.346 .650 -.362

.700 -.346 .700 -.388

.750 -.243 .740 -.300

.800 -.243

.85O -. 183

.900 -. 14 I

1.000 .013

Lower s LII f_.tcc

X/C CP X/C CP

= 0.47 _/= 0.64
.075 .077 .075 .021

•125 .063 .125 -.010

•175 -.096 .225 -. 182

.225 -. 149 .325 -.229

.325 -. 165 .425 -.227

.425 -.292 .525 -.302

.525 -.324 .575 -.376

.575 -.373 .(575 -.222

.625 -.393 .725 -. 170

.725 -.337

.775 -.060

.825 .077

.875 .177

.975 .174

X/C CP

= 0.78
.050 -1.130

.220 -.587

.3(X) -.656

.4OO -.495

.450 -.423

.500 -.408

.550 -.403

.60O -.383

.650 -.362

.700 -.492

.750 -.372

X/C CP

= 0.78
.075 -.004

.125 -.097

,225 -.195

.325 -.206

.425 -.281

.525 -.277

.575 -.267

.675 -.133

108
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MINF=

HP=

PSI NF =

PRI =

QBAR =
ALPI IA =

X/C CP

77= O.25
.025 -.817

•120 -.678

.200 -.579

.250 -.554

.300 -•485

.400 -.451

.500 -.399

.550 -.361

.600 -.329

.650 -.318

.700 -.306

.750 -.310

.850 -. 172

.900 -. 105

.984 -.052

X/C CP

7/: 0.25
.075 .145

•125 .122

.175 .042

•225 -.020

.325 -. 142

.425 -.294

.525 -.449

.575 -.541

.625 -.495

.675 -.405

.725 -.458

.775 -.261

.825 -.136

.875 -.008

.975 .008

Table E-4

.739

30307

619.7

590.9

236.9

4.6

Uppcr surfacc
X/C CP

77: 0.47
.040 -I.285

.140 -.719

.200 -.618

.300 -.56 I

.40O -.481

.5OO -.431

.550 -.414

.600 -.386

.650 -.355

.700 -•355

.75O -.26 I

.800 -.261

.850 -. 197

.900 -. 153

1.000 ,031

X/C CP

77= 0.64
.050 --1.321

.2(X) --.601

.3(X) -.717

.400 -.461

.450 -.421

,500 -.447

.550 -.407

.600 -.359

.650 -.361

.7(X) -.393

.740 -.294

Lower Sul-facc

X/C CP

r/= 0.47
.075 -.050

•125 -.040

•175 -.202

.225 -.249

.325 -.244

.425 -.388

.525 -.410

.575 -.465

.625 -.484

.725 -.355

.775 -.083

.825 .043

.875 .139

.975 .178

X/C CP

77= 0.64
.075 -. 143

.125 -.132

.225 -.302

.325 .335

.425 -.316

.525 -.405

.575 -.494

.675 -.275

.725 -. 198

X/C CP

= 0.78
,050 -1.514

.220 -.538

.300 ---.633

.400 - .470

.450 - .400

.500 -.389

.550 -.392

.600 -.367

.650 -.347

.700 -.500

.750 -.358

X/C CP

r/= 0.78
.075 -. 174

•125 -.242

.225 -.316

.325 -.303

.425 -.384

.525 -.357

.575 .356

.675 -. 180
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lhble E-5

4

!

=

_=

--=

I10

MINF=

HP=

PSINF =

PRI =

QBAR =
ALPHA =

X/C CP

= 0.25
.025 -.799

.120 -.741

.200 -.598

.25O -•559

.3O0 -.504

.400 -.464

,500 -.408

.550 -.371

,600 -.352

.650 -.349

.700 -.290

.750 -.328

•85(1 -.168

.900 -.095

.984 -.051

.747

30342

618•7

591.0

241.4

5.0

Upper surface
X/C CP X/C CP X/C CP

r/= 0.47 rl = 0.64 r/= 0.78
.040 -1.343 .050 -1.364 .050 -1.649

•140 -.941 .2(X) -.582 .220 -.556

.200 -.602 .3(X) -.725 .300 -.646

.300 -.545 .400 -.477 .400 -.485

.400 -.489 .450 -.431 .450 -.414

.500 -.453 .5(×) -.465 .500 -.405

.550 - .415 .550 -.421 .550 -.405

.600 -.396 .6(X) -.365 .600 -.377

.650 -,367 .650 -.372 .650 -.357

,700 -.367 .7(X) -.400 .700 -.508

.750 -.285 .740 -.306 .750 -.372

.8O0 -.285

.850 -.203

.900 -. 157

1.000 .037

X/C CP

77= O.25
.075 .176

.125 .165

•175 .O80

.225 .016

•325 --.107

.425 --.263

.525 --.429

.575 --.546

.625 --.521

.675 --.484

.725 --.378

.775 --.259

.825 --.124

•875 .011

.975 .022

Lower surface

X/C CP X/C CP

r/= 0.47 r/: 0.64
.075 -.009 .075 -. 105

•125 -.014 .125 -.104

.175 -.179 .225 -.280

.225 -.223 .325 -.311

.325 -.222 .425 -.298

.425 -.374 .525 -.389

.525 -.395 .575 -.479

.575 -.449 .675 -.265

.625 -.474 .725 -. 191

.725 -. 194

.775 -.066

•825 .060

.875 .16O

.975 .196

I !

X/C CP

T1: 0.78
.075 -. 129

125 -.209

.225 -.283

.325 -.283

.425 -.363

.525 -.342

.575 -.339

.675 -. 165



MINF=
HP=
PSINF=
PRI=
QBAR=
ALPItA --

X/C CP
: O.25

.025 -.891
•120 -.943
.200 -.687
.250 -.619
.3O0 -.543
,400 -.488
.5(10 -.420
.550 -.386
.600 -.351
.65O -.328
.700 -.306
.75O -.319
.850 -. 172
.900 -. 102
.984 -.057

X/C CP
= 0.25

.075 .201
•125 .178
•175 .103
•225 .037
.325 -.071
.425 -.253
.525 -.402
.575 -.494
.625 -.510
.675 -.423
.725 -.543
.775 -.261
•825 -.130
•875 .002
.975 .014

TableE-6

.752
30405

616.9
590.3
244.3

6.1

Upper surface
X/C CP

= 0.47
.040 -1.448

•140 -I.467

.200 -.800

.30(/ -•557

.400 -.488

.5OO -.439

.550 -.413

.6O0 -.391

.650 -.359

.700 -.359

.750 -.247

.80O -.247

.850 -. 179

5)00 -. 144

1.000 .028

X/C CP X/C CP

rl = 0.64 7/= 0.78
.050 -1.473 .050 -1.784

.2(X) -.917 .220 -.638

.3(X) -.679 .300 -.603

.4(X) -.457 .400 -.476

.450 -.421 .450 -.413

.5(X) -.452 .500 -.409

.550 -.410 .550 -.409

.600 -.359 .600 -.378

.650 -.361 .650 -.359

.700 -.383 .700 -.494

.740 -.294 .750 -.359

LowcI _tll'Itlcc

X/C CP

rl : 0.47
.075 .050

•125 .040

•175 -.124

.225 -.173

.325 -. 18O

.425 -.335

.525 -.374

.575 -.446

.625 -.476

.725 -.351

.775 -.069

.825 .063

.875 .161

.975 .187

X/C CP X/C CP

= 0.64 _ = 0.78
.075 -.021 .075 -.051

.125 -.045 .125 -•143

.225 -.227 .225 -.239

.325 -.273 .325 -.248

.425 -.272 .425 .339

.525 -.368 .525 -.333

.575 -.463 .575 -.334

.675 -.262 .675 -.164

.725 -.192
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TableE-7

Y.

:z
=

=

N

2

J

m

112

MINF=

HP=

PSINF =

PRi =

QBAR =
ALPHA =

X/C CP

_7= 0.25
.025 -.895

.120 -I.121

.200 -.983

.250 -.877

.300 -.792

.400 -.555

500 -.417

.550 -.385

.600 -.348

.650 -.316

.700 -.283

.750 -.322

.850 -. 163

.900 -.087

.984 -.051

.793

30457

615.5

586.3

270.6

7.1

Upper surface
X/C CP

77= 0.47
.040 -I.392

•140 -I.623

.200 -I.453

.300 -I.197

.400 -.727

.5OO -.369

.55O -.341

.600 -.330

.650 -.315

.700 -. 315

.750 -.209

•800 -.209

.850 -. 157

.9OO -. 138

1.000 .026

X/C CP

= 0.64
.050 -1.405

.200 -1.453

.300 - 1.478

.400 - .764

.450 -.639

.500 - .457

.550 -.366

.600 -.289

.650 -.284

.700 -.294

.740 -.246

X/C CP

= 0.25
.075 •241

.125 •211

.175 .142

•225 .093

.325 -.029

.425 -.217

.525 -.360

.575 -.415

.625 -.530

.675 -.600

.725 -.498

.775 -.286

.825 -.140

.875 .010

.975 .024

Lower surface

X/C CP X/C CP

= 0.47 7?= 0.64
.075 . 107 .075 .030

•125 .099 .125 -.001

.175 -.072 .225 -.188

.225 -. I 18 .325 -.251

.325 -.143 .425 -.253

.425 -.31 I .525 -.368

.525 -.352 .575 -.483

.575 -.440 .675 -.257

.625 -.494 .725 -. 183

.725 -.315

.775 -.054

.825 .077

.875 .176

.975 .2(16

111i

X/C CP

_7TM 0.78
.050 -1•681

.22O -t.499

.300 -1.234

.40O -.670

.450 -.479

.5OO -.338

.55(/ -.299

.6(X) -.285

.650 -.279

.7(X) -•355

.75O -.283

X/C CP

= 0.78
.075 .005

•125 -.098

.225 -.203

.325 -.232

.425 -.336

.525 -.331

.575 -.348

.675 -.164



MINF=
HP=
PSINF=
PRI=
QBAR=
ALPHA=

X/C CP
7/: 0.25

.025 -.668

.120 -.771

.200 -.662
.250 -.584
.300 -.509
.400 -.473
.500 -.413
.550 -.377
.600 -.349
.650 -.312
.700 -.274
.750 -.343
.850 -.178
.900 -. 119
.984 -.052

X/C CP
= O.25

.075 . I13
•125 .098
•175 .020
.225 -.051
.325 -.144
.425 -.337
.525 -.438
.575 -.525
.625 -.631
.675 -.497
.725 -.413
.775 -.303
.825 -.190
.875 -.071
.975 -.032

TableE-8

.8(X)
30425

616.4
581.0
276.0

3.7

Upper surface
X/C CP

7/= 0.47
.040 -1.035

• 140 -I.229

.200 -.628

.300 -.484

.400 -.473

.500 -.455

.550 - .427

.600 - .399

.650 -.375

.7O0 -.375

.750 -,281

•800 -.281

.850 -.206

.9O0 -. 164

t.000 .040

X/C CP X/C CP

r/= 0.64 7/= 0.78
.050 -1.049 .050 -1.271

.2(X) -.574 .220 -.504

,3(X) -.754 .300 -.689

.4(X) -.465 .400 -.487

.450 -.428 .450 -.405

.5(X) -.470 .500 -.404

.550 -.427 .550 -.405

.600 -.372 .600 -.368

.650 -.375 .650 -.352

.7(X) -.416 .700 -.540

.740 -.309 .750 -.366

Lower surface

X/C CP

= 0.47
.075 -. 118

•125 -.089

.175 - .265

.225 -.296

.325 -.290

.425 - .467

.525 -.463

.575 -.528

.625 -.586

.725 -.316

.775 -.094

.825 .012

.875 .O98

.975 .178

X/C CP X/C CP

= 0.64 _ e 0.78
.075 -.232 .075 -.279

.125 -.199 .125 -.350

.225 -.393 ,225 -.411

.325 -.421 .325 -.373

.425 -.378 .425 -.493

.525 -.539 .525 -.421

.575 -.699 .575 -.431

.675 -.306 .675 -,205

.725 -.221
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TableE-9

2

2

:=
z

=

z

114

MINF=

HP=

PSINF =

PRI =

QBAR =
ALPHA =

X/C CP

7/= 0.25
.025 -.644

.120 -.831

.200 -.686

.250 -.607

.3O0 -.518

.400 -.468

.500 -.411

.550 -.374

.600 -.357

.650 -.357

.7OO -.302

.750 -.349

.850 -.173

.900 -,106

.984 -.048

.8(X)

30423

616.4

580.6

276.4

4.1

Upper surface
X/C CP X/C CP

r/= 0.47 r/= 0.64
.040 - 1.131 .050 - 1.093

•140 -1.256 .2(X) -.876

.200 -.728 .3(X) -.611

.300 -.461 .400 -.444

.400 - .461 .450 -.412

.500 -.448 .5(X) -.467

.550 -.423 .550 -.422

.600 -.401 .600 -,370

.650 -.377 .650 -.375

,700 -.377 .7(X) -.414

.750 -,300 .740 -.309

.800 -.300

.850 -.2(LI

.900 -. 159

1.000 ,048

X/C CP

= 0.25
.075 .145

.125 ,133

•175 ,05 I

.225 -.016

.325 -.113

.425 -.340

.525 -,426

.575 -.509

.625 -,672

.675 -.459

.725 -.4(X)

.775 -,289

.825 -.164

•875 -.040

.975 -.006

Lower SUl-facc

X/C CP X/C CP

r/: 0.47 r/: 0.64
.075 -.083 .075 -. 197

• 125 -.066 .125 -. 177

•175 -.240 .225 -.362

.225 -.279 .325 -.397

.325 -.269 .425 -.358

.425 -.447 .525 -.516

.525 -.455 .575 -.673

.575 -.521 .675 -.297

.625 -.582 .725 -.209

.725 -.205

.775 - .080

.825 .028

.875 •115

.975 .194

IIii

X/C CP

= 0.78
.050 -1.320

.220 -.444

.300 -.608

.400 -.485

.450 -.402

.500 -.405

.550 -.409

.600 -.375

.65O -.354

.700 -.548

.750 -.376

X/C CP

,q = 0.78

.075 -.240

.125 -.310

•225 -.379

.325 -.351

.425 -.469

.525 -.403

.575 -.416

.675 -. 195



MINF=
HP=
PSINF=
PRI---
QBAR=
ALPHA=

X/C CP
7/= 0.25

.025 -.656

.120 -.875

.200 -.839

.250 -.771

.300 -.721

.400 -.732

.500 -.738

.550 -.597

.600 -.344

.650 -.295

.700 -.247

.750 -.296

.850 -.139

.900 -.082

.984 -.043

X/C CP

= 0.25
.075 .197

.125 .165

•175 .085

.225 .052

.325 -.124

.425 -.173

.525 -.558

.575 -.403

.625 -.502

.675 -.554

.725 -.528

.775 -.387

.825 -.203

•875 -.017

.975 -.005

Table E- 10

.841

30486

614.7

578.3

304.2

5.2

Upper surface
X/C CP

= 0.47
.040 -1.023

•140 -1.280

.200 -1.176

.300 -1.232

.40O -.801

.500 -.769

.550 -.488

.60O -.312

.650 -.273

.700 -.273

.750 -.201

.800 -.201

.850 -. 147

.900 -. 111

1.000 .068

X/C CP X/C CP

77= 0.64 r/= 0.78
.050 -1.081 .050 -1.306

.2(X) -1.179 .220 -1.179

.300 -1.218 .300 -1.281

.400 -1.167 .400 -1.112

.450 -1.079 .450 -.871

.500 -.667 .500 -.612

.550 -.485 .550 -.474

.600 -.307 .600 -.294

.650 -.224 .650 -. 192

.700 -.216 .700 -.240

.740 -. 190 .750 -.211

Lower surface
X/C CP

7/= 0.47
.075 -.012

•125 .003

.175 -.171

.225 -.215

.325 -.212

.425 -.421

.525 -.408

.575 -.457

.625 -.648

.725 -.281

.775 -. 104

.825 -.013

.875 .066

.975 .181

X/C CP X/C CP

r/= 0.64 7) = 0.78
.075 -.114 .075 -.167

.125 -.113 .125 -.258

.225 -.318 .225 -.341

.325 -.357 .325 -.326

.425 -.327 .425 -.512

.525 -.514 .525 -.382

.575 -.701 .575 -.427

.675 -.259 .675 -. 196

.725 -. 182
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TableE-11

=

2

=

=

m

_q

==

t_

116

MINF =

HP=

PSINF =

PRI =

QBAR =
ALPHA --

X/C CP

r/= 0.25
.025 -.547

.120 -.719

.200 -.674

.25O -.621

.300 -.601

.400 -.623

.500 -.407

.550 -.365

.600 -.348

.650 -.321

.700 -.294

.750 -.373

.850 -. 188

.900 -.127

.984 -.042

X/C CP

77= 0.25
.075 .105

.125 .080

•175 --.005

.225 --.029

.325 --.240

.425 --.223

.525 --.618

.575 --.567

.625 --.523

.675 --.537

.725 --.468

.775 --.380

.825 --.237

.875 --.093

.975 --.059

.845

30472

615.1

572.7

307.3

3.1

Upper surface
X/C CP X/C CP X/C CP

7/= 0.47 r/= 0.64 r/= 0.78
.040 -.864 .050 -.878 .050 -1.079

.140 - 1.110 .2(X) -.912 .220 -.909

.200 -.957 .300 - 1. 107 .300 -.846

.300 -.638 .400 -.346 .400 -.336

.400 -.593 .450 -.327 .450 -.326

.500 -.394 .5(X) -.392 .500 -.367

.550 -.391 .550 -.385 .550 -.400

.600 -.387 .6(X) -.354 .600 -.356

.650 -.372 .650 -.358 .650 -.339

.700 -.372 .7(X) -.419 .700 -.589

.750 - .287 .740 -.310 .750 -.351

.800 -.287

.850 -.204

.900 -.146

1.000 .()55

Lower SLII"f:.lCrd

X/C CP X/C CP

7/= 0.47 r/= 0.64
.075 -. 164 .075 -.28 l

.125 -.121 .125 -.237

•175 -.291 .225 -.470

.225 -.321 .325 -.392

.325 -.289 .425 -.558

.425 -.604 .525 -.633

.525 -.437 .575 -.708

.575 -.483 .675 -.337

.625 -.665 .725 -.212

.725 -.280

.775 -. 140

.825 -.059

.875 .013

.975 .115

X/C CP

r/= 0.78
.075 -.347

.125 -.400

.225 -.658

.325 -.366

.425 -.546

.525 -.648

.575 -.455

.675 -.209

- I I11



MINF--

HP=

PSINF =

PRI =

QBAR --
ALPHA =

X/C CP

; 0.25
.025 -.531

.120 -.735

.200 -.682

.250 -.623

.300 -.604

.4OO -.632

.500 -.483

.550 -.355

.600 -.341

.650 -.364

.700 -.321

.750 -.380

.850 -.180

.900 -.110

.984 -.037

X/C CP

: 0.25
.075 .128

.125 .112

•175 .020

.225 -.004

.325 -.202

.425 -.215

.525 -.618

.575 -.573

.625 -.526

.675 -.546

.725 -.452

.775 -.365

.825 -.218

.875 -.072

.975 -.(M6

Tablc E-12

.846

30511

613.9

572.1

308.0

3.3

Upper surface
X/C CP

r/= 0.47
.040 -.919

•140 -1.108

.200 -.983

.300 -.662

.400 -.634

.500 -.372

.550 -.355

.600 -.37 I

.650 -.360

.700 -.360

.750 -.308

.800 -.308

.850 -.203

.900 -.143

1.000 .061

X/C CP X/C CP

r/= 0.64 7] = 0.78
.050 -.893 .050 -1.086

.200 -.956 .220 -.919

•3(X) -1.106 .300 -1.190

.400 -.443 .400 -.337

.450 -.323 .450 -.268

.5(X) -.342 .500 -.296

.550 -.341 .550 -.343

.6(X) -.319 .600 -.331

.650 -.338 .650 -.325

.7(X) -.401 .700 -•578

.740 -.308 .750 -.361

Lower g u l[LlCC

X/C CP

: 0.47
.075 -. 137

.125 -.106

•175 -•276

.225 -.308

.325 -.279

.425 -.593

.525 -.430

.575 -.486

.625 -.660

.725 -.221

.775 -. 130
_3.8.5 -.050

.875 .02 l

.975 .135

X/C CP X/C CP

r7= 0.64 T/= 0.78
.075 -.268 .075 -.328

.125 -.227 .125 -.381

.225 -.448 .225 -.650

.325 -.381 .325 -.356

.425 -.556 .425 -.533

.525 -.630 .525 -.639

.575 -.704 .575 -.458

.675 -.328 .675 -.202

.725 -.200
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ll_blc E-13

=

===

==

118

MINF=

ttP=

PSINF =

PRi =

QBAR =
ALPHA =

.873

30556

612.7

567.0

326.7

2.7

X/C CP

_7= 0.25
.025 -.466

.120 -.666

.200 -.646

.250 -.615

.300 -.578

.400 -.610

,500 -.609

.550 -.596

.6O0 -,536

.650 -.445

.700 -.354

,750 -.358

.850 -.178

.900 -.118

.984 -.039

Upper surface
X/C CP X/C CP

r/= 0.47 r/= 0.64
.040 -.752 .050 -.759

.140 -1.027 .2(X) -.831

.200 -.877 .300 -1.035

.300 -.618 .4(X) -.609

.400 -.601 .450 -.552

.500 -.667 .500 -.653

.550 -.666 .550 -.595

.600 -.655 .6(X) -.648

.650 -.631 .650 -.353

.700 -.631 .700 -.290

.750 -.232 .740 -.219

.800 -.232

.850 -. 165

.900 -. 124

1.000 .065

X/C CP

7/ = O.25
.075 . I01

.125 .069

•175 -.036

.225 -.023

.325 -.258

.425 -.344

.525 -.423

.575 -.543

.625 -.528

.675 -.690

.725 --.529

.775 -.448

.825 -.273

.875 -.096

.975 -.057

Lowcl- SUI'['_.ICC

X/C CP X/C CP

77= 0,47 r/= 0.64
.075 -. 193 .075 -.32 l

.125 -.148 .125 -.248

•175 -.336 .225 -.490

,225 -.354 .325 -.588

.325 -.271 .425 -.633

.425 -.575 .525 -.666

.525 -.578 .575 -.699

,575 -.519 .675 -.429

.625 -.675 .725 -.267

.725 -.235

.775 -.158

.825 -.122

.875 -.097

.975 .061

X/C CP

_7= 0.78
.050 -.952

.220 -.856

.300 -1.150

.400 -.806

.450 -.809

.500 -.574

.550 -.354

.600 -.252

.650 -.229

.700 -.435

.750 -.285

X/C CP

r/= 0.78
.075 -.375

.125 -.506

.225 -.620

.325 -.613

.425 -.554

.525 -.675

.575 -.745

,675 -. 192

F

!

i
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MINF=

HP=

PSINF --

PRI =

QBAR =
ALPHA =

X/C CP

7/ = 0.25
.025 --.443

.120 --.671

.200 --.647

.250 --.601

.300 -.584

.400 -.601

.500 -.613

.550 -.593

.600 -.552

.650 -.533

.700 -.452

.750 -.374

.850 -. 168

.900 -. 122

.984 -.032

X/C CP

= 0.25
.075 .113

• 125 .094

•175 -.0t7

.225 .001

.325 -.247

.425 -.313

.525 -.443

.575 -.554

.625 -.535

•675 -.629

.725 -.467

.775 -.436

.825 -.268

.875 -.102

.975 -.051

Table E-14

.873

30644

610.2

565.8

325.9

2.7

Upper surface
X/C CP

7/= 0.47
.040 -.767

.140 -1.026

.200 -.885

.300 -.666

.400 -.606

.500 -.666

.550 -.668

.600 -.664

.650 -.644

.700 -.644

.750 -.245

.800 -.245

.850 -.158

.900 -.099

1.000 .069

X/C CP X/C CP

7/= 0.64 7/= 0.78
.050 -.761 .050 -.957

.2(X) -.833 .220 -.846

.300 -1.029 .300 -1.142

.4(X) -.658 .400 -.808

.450 -.560 .450 -.818

.5(X) -.650 .500 -.703

.550 -.605 .550 -.458

.600 -.647 .600 -.272

.650 -.506 .650 -.231

.7(X) -.301 ,700 -.416

.740 -.221 .750 -.305

Lower surface
X/C CP

= 0.47
.075 -. 176

.125 -,142

•175 -.324

.225 -.344

.325 -.267

.425 -.568

.525 -.575

.575 -.518

.625 -.676

.725 -.250

.775 -.156

.825 -.097

.875 -.048

.975 .080

XIC CP X/C CP

= 0.64 _ = 0.78

.075 -.304 .075 -.364

.125 -.247 .125 -.486

.225 -.463 .225 -.612

.325 -.574 .325 -.587

.425 -.627 .425 -.539

.525 -.660 .525 -,675

.575 -.693 .575 -.746

.675 -.357 .675 -.194

,725 -.238
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TableE-15

120

MINF=
HP=
PSINF=
PR!=
QBAR =
ALPHA =

X/C CP

77= 0.25
.025 --.518

.120 --.737

.200 --.737

.250 -.681

.300 -.638

.400 -.680

.5OO -.678

.550 -.656

.600 -.648

.650 -.566

.700 -.484

.750 -.406

.850 -.153

.900 -.089

.984 -.035

.875

31192

595.1

555.4

318.6

4.0

Upper surfacc
X/C CP X/C CP X/C CP

= 0.47 r/= 0.64 77= 0.78
.040 -.850 .050 -.874 .050 -1.082

•140 -1.075 .2(X) -1.033 .220 -.978

.200 1.005 .300 -1.072 .300 -1.172

.300 - 1.022 .4(X) -1.017 .400 -.992

.400 -.707 .450 -.970 .450 -.979

.500 -.726 .500 -.943 .500 -.995

.550 -.745 .550 -.789 .550 -.856

.600 -.751 .6(X) -.727 .600 -.681

.650 -.757 .650 -.649 .650 -.555

.700 -.757 .7(X) -.420 .700 .401

.750 -.216 .740 -.250 .750 -.238

.800 -.216

.850 -. 133

.900 -.073

1.00{} .022

X/C CP

= {).25
.075 .155

•125 .123

•175 .025

.225 .027

.325 -.187

.425 -.297

.525 -.363

.575 -.354

.625 -.51 I

.675 -.705

.725 -.532

.775 -.562

.825 -.312

.875 -.062

.975 -.009

Lowcl- surface

X/C CP X/C CP

7/= 0.47 r/= 0.64
.075 -.093 .075 -.204

.125 -.067 .125 -.173

•175 -.248 .225 -.403

.225 -.283 .325 -.351

.325 -.233 .425 -.499

.425 -.513 .525 -.573

.525 -.418 .575 -.646

.575 -.485 .675 -.478

.625 -.618 .725 -.241

.725 -.301

.775 -. 184

.825 -.095

.875 - .022

.975 .078

X/C CP

_7= 0.78
.075 -.266

•125 -.320

.225 -.587

.325 -.407

.425 -.493

.525 -.655

.575 -.717

.675 -.189

r

J
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i
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APPENDIX F

SURFACE PRESSURE COEFFICIENTS, PYLONS OFF, HP _: 40,000 FT

M o_,dog
1 .734 7.9

2 .799 6. I

3 .853 4.7

121



TableF-1

=_

122

MINF=

H P=

PS1NF =

PRI =

QBAR =
ALPHA --

.734

40164

388.6

375.7

146.7

7,9

X/C CP

= 0.25
.025 -1.126

.120 -!.131

.200 -.759

.250 -.674

.300 -.578

.400 -.537

.500 -.463

.550 -.433

.600 -.390

.650 -.396

.700 -.322

.750 -.362

•850 -.178

.900 -. 106

.984 - .070

Upper surface

X/C CP

7/= 0.25
.075 ,225

.125 .207

.175 .140

.225 .074

.325 -.039

.425 -.194

.525 -.382

.575 -.454

.625 -.495

.675 -.495

.725 -.345

.775 -.251

,825 -. 140

.875 -,029

.975 .032

X/C CP

= 0.47
.040 -I.655

•140 -1.284

.200 -.989

.3O0 -.795

.400 -,591

.500 -.479

.55O -.425

.600 -.406

.650 -.375

.700 -.375

.750 -.261

•800 -.261

.850 -. 197

.900 -. 155

1.000 -.025

X/C CP

7/ = 0.64
.050 --1.714

.200 --1,253

.300 -- .765

.400 .484

.450 --.457

•500 --.448

.550 --.424

.600 -- .350

.650 --.360

,700 --.367

.740 -- .297

Lower surface

X/C CP X/C CP

= 0.47 _ = 0.64
.075 .160 .075 .089

,125 .126 .125 .035

. 175 -.040 ,225 -. 149

.225 -.082 .325 -.202

.325 -,115 ,425 -.216

.425 -.269 .525 -.310

.525 -.304 .575 -.404

,575 -.371 .675 -.242

.625 -.408 .725 -. 184

.725 -. 166

.775 -.047

.825 .087

.875 .187

.975 .184

1IIi

X/C CP

rj = 0.78
.050 -2.021

.220 -1.018

.300 -.643

.400 -.472

.450 -.412

.500 -.403

.550 -.401

.6(X) -.378

.650 -.360

.700 -.439

.750 -.338

X/C CP

_/: 0.78
.075 •072

•125 -.030

.225 -.165

.325 -.180

.425 -.285

.525 -.292

.575 -,295

.675 -.157

i

i
!

|
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MINF=

HP=

PSINF =

PRI =

QBAR =
ALPHA =

X/C CP

77-- 0.25

.025 - .796

•120 -I.012

.200 -.883

.250 -.811

.300 -.729

.400 -.518

.50O -.423

.550 - .40 I

.6OO -.351

.65O -.373

.700 -.315

.750 -.358

.850 -. 174

.900 -. 105

.984 -.059

X/C CP

7/= 0.25
.075 .201

.125 •173

•175 .107

.225 .039

.325 -.066

.425 -.271

•525 -.384

.575 -.480

.625 -.572

.675 -.505

.725 -.420

.775 -.296

.825 -.177

•875 -.058

.975 .037

Tablc F-2

.799

40334

385.5

366.5

172.3

6.1

Upper surface
X/C CP

_7: 0.47
.040 -1.224

.140 -1.502

.200 -1.346

.300 -.959

.4O0 -.482

.500 -.375

.550 -.365

.600 -.366

.650 -.348

.700 -.348

.750 -.262

.800 -.262

.850 -. 183

.900 -. 145

1.(X)0 .042

X/C CP

= 0.64
.050 -I.289

.200 -1.352

.300 -1.324

.400 -.546

.450 -.377

.500 -.350

.550 -.323

.600 -.281

.650 -.309

.700 -.341

.740 -.272

Lower Stll'['[tCC

X/C CP

77: 0.47
.075 .045

• 125 .036

• 175 -.131

.225 -. 176

.325 -.181

.425 -.360

.525 -.390

.575 -.474

.625 -.513

.725 -. 184

.775 -.053

.825 .060

.875 .149

.975 .209

X/C CP

= 0.78
.050 -1•548

.220 -I.365

.300 -.965

.400 -.477

.45O -.318

.5(X) -.282

.550 -.306

.600 -.312

.650 -.310

.7(X) -.437

.750 -.324

X/C CP X/C CP

7?= 0.64 77= 0.78
.075 -.046 .075 -.081

•125 -.072 .125 -. 177

.225 -.261 .225 -.279

.325 -.308 .325 -.275

.425 -.298 .425 -.390

.525 -.421 .525 -.369

.575 -.544 .575 -.376

.675 -.284 .675 -. 186

.725 -.206
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TableF-3

124

MINF =

HP=

PS1NF =

PR1 =

QBAR =
ALPHA =

X/C CP

r/: O.25
.025 -.589

•120 -.824

.200 -.793

.250 -.745

.300 -.691

.400 -.713

.500 -.720

.550 -.689

.600 -.629

.65O -.388

.700 -.286

.750 -.315

•850 -.198

.900 -.158

.984 -.042

.853

40492

382.5

360.7

195.0

4.7

Upper surface
X/C CP

= 0.47
.C)40 -.919

•140 -1.205

.200 -1.108

•300 -1.150

.400 -.764

.500 -,767

.550 -.760

.600 -.646

,650 -.320

.700 -,320

.750 -.213

.800 -,213

.850 -. 144

.900 -.092

1.000 .063

X/C CP

= 0,64
.050 -.992

.2(X) -1.II7

.300 -1.163

.4O0 -1.102

.450 -1.076

.500 -.949

.550 -.649

.600 -.378

.650 -.251

.700 -.219

.740 -. 170

X/C CP

_/= 0.25
.075 .176

.125 .143

•175 .060

.225 .034

.325 -.176

.425 -.174

.525 -.515

.575 -.491

.625 -.489

.675 -.511

.725 -.455

.775 -.495

.825 -.290

•875 -.086

.975 .007

Lower surface

X/C CP X/C CP

rl : 0.47 r/: 0.64
.075 -.042 .075 -. 155

• 125 -.027 .125 -. 150

. 175 -.202 .225 -.365

.225 -.232 .325 -.378

.325 -.220 .425 -.330

.425 -.488 .525 -.510

.525 -.423 .575 -.690

.575 -.453 .675 -.305

.625 -.633 .725 -.197

.725 -.212

.775 -, 119

.825 -.036

.875 .033

.975 .155

X/C CP

r_= 0.78
.050 -t.212

.220 -1.110

.300 -1.218

.400 -1.064

.450 -1.052

.5O0 -.681

.550 -.596

.600 -.476

.650 -.253

.700 -.210

.750 -. 175

X/C CP

= 0.78
.075 -.212

•125 -.300

.225 -.395

.325 -.344

.425 -.522

.525 -.635

.575 -.402

.675 -,212
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APPENDIX G

INTEGRATED SECTION QUANTITIES, c. and cm, PYLONS ON, liP _ 20,000 FT

C,_ C,,_ C,_ Cm C,_ C,,_ C,, Cm

M c_, dcg Run no. rl = 0.25 r/= 0.47 r/= 0.64 7"1= 0.78
0.456 8.8 65T16 0.387 0.(X)5 0.501 -0.047 0.432 -0.012 0.459 -0.034

0.504 8.2 65TI 0.357 0.(X)7 0.469 -0.046 0.398 -0.011 0.408 -0.031

0.640 5.1 65T2 0.244 0.011 0.307 --0.036 0.204 -0.004 0.207 -0.022

0.747 3.3 66T14 0.173 0.016 0.210 -0.028 0.073 0.002 0.090 -0.023

0.800 2.7 66T15 0.155 0.021 0.162 -0.023 0.060 0.010 0.088 -0.022

0.803 2.9 65T3 0.162 0.024 0.183 -0.019 0.077 0.009 0.135 -0.023

0.805 2.7 65T15 0.156 0.027 0. 168 -0.020 0.071 0.006 0.130 -0.030

0.842 2.3 65T13 0.154 0.027 0.124 0.008 0.034 0.018 0.112 -0.035

0.859 2.2 65T4 0.129 0.031 0.127 0.018 0.044 0.016 0.155 -0.042
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APPENDIX II

INTEGRATED SECTION QUANTITIES, c_ and cM, PYLONS ON, tiP = 30,000 FT

C,, Cm C,_ Cm C,_ Cm C,_ Cm

M c_, dog Run no. 71= 0.25 r/= 0.47 r/= 0.64 r/= 0.78
7.0 66T8 0.337 -0.015

5.0 66T12 0.265 -0.006

4.2 66T9 0.186 -0.013

5.2 66TILT 0.393 -0.008

3.4 66T11 0.206 -0.018

4.0 0.343 -0.041

3.5 0.295 -0.034

2.7 0.209 -0.023

0.642

0.747

0.796

0.84 l

0.843

0.874

0.876

0.877

0.334 0.000

0.255 0.008

0.239 0.016

0.348 0.012

0.225 0.020

66TIOMT 0.272 0.009

66TIOT 0.249 0.010

66T10 0.207 0.012

0.437 -0.030

0.315 -0.027

0.280 -0.017

0.446 -0.019

0.230 0.(X)2

0.344 -0.013

0.293 -O.(X)7

0.224 -0.001

0.375 0.014

0.211 0.013

0.185 0.016

0.318 0.019

0.103 0.029

0.278 -0.006

0.235 -0.004

0.160 -0.002
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APPENDIX I

INTEGRATED SECTION QUANTITIES, c. and cm, PYLONS ON, HP _ 40,000 FT

C,_ Cm C,_ C,, C,_ C,,, C,_ C,,,

M c_, dog Run no. r/= 0.25 77= 0.47 T/= 0.64 77= 0.78
0.754 7.6 66T5 0.401 0.016 0.530 -0.019 0.386 0.026 0.400 0.010

0.818 5.9 66T6 0.361 0.019 0.463 -0.011 0.348 0.030 0.372 0.010

0.843 5.2 66T7 0.345 0.012 0.440 -0.016 0.317 0.021 0.391 -0.008
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APPENDIX J
INTEGRATED SECTION QUANTITIES, c. and c,n,PYLONS OFF, HP _ 20,000 FT

C,, Cm C,_ C,,_ C, C= C,_ C,,_

M oe, dog Run no. 7?= 0.25 r/= 0.47 r/= 0.64 7/= 0.78
0.486 7.4 612T1 0.333 0.009 0.422 -0.038 0.393 -0.020 0.419 -0.039

0.495 8.1 610T1 0.337 0.016 0.429 -0.029 0.427 -0.020 0.460 -0.038

0.500 7.6 612TI9F 0.344 0.008 0.430 -0.036 0.401 -0.020 0.434 -0.038

0.642 4.3 612T2 0.240 0.010 0.263 -0.031 0.211 -0.010 0.224 -0.028

0.647 4.7 610T2 0.222 0.018 0.254 -0.019 0.219 -0.007 0.235 -0.026

0.651 4.3 612TIgE 0.242 0.008 0.266 -0.029 0.211 -0.009 0.237 -0.031

0.725 5.0 612T14 0.250 0.012 0.321 -0.022 0.277 -0.004 0.248 -0.030

0.742 3.3 610T14 0.163 0.026 0.193 -0.010 0.128 -0.003 0.143 -0.022

0.750 2.6 612TI9D 0.176 0.013 0.193 -0.021 0.107 -0.008 0.116 -0.030

0.767 2.7 612T18 0.091 0.054 0.203 -0.021 0.I30 -0.0II 0.142 -0.030

0.799 2.4 69T15 0.142 0.023 0.154 -0.013 0.093 0.007 0.096 -0.014

0.799 2.7 610T3 0.147 0.029 0.144 -0.003 0.128 0.008 0.126 -0.018

0.800 1.9 612T19C 0.156 0.015 0.150 -0.019 0.075 -0.004 0.065 -0.029

0.801 4.8 612T3 0.269 0.022 0.352 -0.010 0.297 0.011 0.315 -0.013

0.820 5.2 612T13 0.274 0.021 0.299 -0.003 0.292 0.019 0.154 -0.015

0.845 1.9 69T13 0.147 0.025 0.153 -0.002 0.072 0.002 0.085 -0.015

0.848 2.0 610T13 0.148 0.029 0.141 0.007 0.087 0.007 0.084 -0.016

0.851 1.0 612T19B 0.119 0.019 0.087 -0.011 0.011 -0.005 0.012 -0.041

0.866 1.6 69"1"4 0.146 0.023 0.127 0.006 0.074 0.006 0.068 -0.018

0.866 1.7 610T4 0.153 0.024 0.131 0.013 0.073 0.008 0.096 -0.019

0.876 1.4 612TIgA 0.139 0.025 0.144 -0.006 -0.020 -0.008 0.123 -0.030

7=

=a
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APPENDIX K
INTEGRATED SECTION QUANTITIES, c° and c.,, PYLONS OFF, liP _ 30,000 FT

C. C,,_ C. Cm C. Cm C,_ Cm

M c_, deg Run no. r/= 0.25 rj = 0.47 r/= [).64 r/= 0.78

0,630 10.5 610T8T 0.444 0.003 0,595 -0.028 0,586 0.011 0,582 -0,008

0.649 7.0 69T8 0.316 0.012 0.439 -0.020 0.436 -0.001 0.469 -0.019

0.650 6.3 610T8 0.281 0.014 0.373 -0.012 0.326 -0.003 0.329 -0.027

0,739 4.6 610T12 0.215 0.019 0.262 -0.011 0.246 0.006 0.285 -0.010

0.747 5.0 69T12 0.244 0.016 0.316 -0.019 0.269 0.003 0.327 -0.013

0.752 6.1 610TI2T 0.290 0.021 0.383 -0.003 0.331 0.010 0.363 -0.008

0.793 7.1 611TT9 0.375 0.025 0.534 -0.002 {).498 0.015 0.508 0.010

0.800 3.7 611TP9 0.200 0.027 0.245 -0,(g}4 0.164 0,0t0 0.212 -0.011

0.800 4.0 69T9 0.227 0.022 0.281 -0.009 0.205 0.012 0,221 -0.013

0.841 5.2 611TTI I 0.325 0.020 0.428 0.000 0.390 0.011 0.412 0.004

0,845 3.1 611TP I I 0.193 0.028 0.234 0.005 0.168 0.017 0.182 -0.003

0.847 3.3 69T11 0.216 0.024 0.256 0.(X)2 0.181 0.018 0.212 -0.003

0.873 2.7 611TPI0 0.205 0.020 0.248 -0.006 0.139 0.020 0.178 0.003

0.873 2.7 69T10 0.226 0.013 0.264 -0.[X)9 0.168 0.011 0,198 -0.002

0.875 4.0 611T1"10 0.295 0,008 0.387 -0.020 0.351 -0.010 0.358 -0.021
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APPENDIX L
INTEGRATED SECTION QUANTITIES, c. and c,,_, PYLONS OFF, liP .._ 40,000 FT

C,_ C,,, C,_ C_ Cn Cm C,, C,,_

M c_, deg Run no. rj = 0.25 r/= 0.47 r_= 0.64 rj = 0.78
0.734 7.9 69T5 0.377 0.014 0.507 -0.023 0.450 0.013 0.472 0.001

0.799 6.1 69T6 0.329 0.021 0.450 -0.008 0.389 0.021 0.405 0.009

0.853 4.7 69T7 0.325 0.010 0.419 -0.012 0.371 0.006 0.374 0.003

_=
I
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